These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 35656546)

  • 41. TGF-β regulation of microRNA miR-497-5p and ocular lens epithelial cell mesenchymal transition.
    Wang J; Zhang J; Xiong Y; Li J; Li X; Zhao J; Zhu G; He H; Mayinuer Y; Wan X
    Sci China Life Sci; 2020 Dec; 63(12):1928-1937. PubMed ID: 32399769
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Snail is required for transforming growth factor-beta-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway.
    Cho HJ; Baek KE; Saika S; Jeong MJ; Yoo J
    Biochem Biophys Res Commun; 2007 Feb; 353(2):337-43. PubMed ID: 17187756
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CtBP2 Regulates TGFβ2-Induced Epithelial-Mesenchymal Transition Through Notch Signaling Pathway in Lens Epithelial Cells.
    Zhang G; Kang L; Chen J; Xue Y; Yang M; Qin B; Yang L; Zhang J; Lu H; Guan H
    Curr Eye Res; 2016 Aug; 41(8):1057-1063. PubMed ID: 26681554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rho activation is required for transforming growth factor-beta-induced epithelial-mesenchymal transition in lens epithelial cells.
    Cho HJ; Yoo J
    Cell Biol Int; 2007 Oct; 31(10):1225-30. PubMed ID: 17537651
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MicroRNA-34a inhibits epithelial-mesenchymal transition of lens epithelial cells by targeting Notch1.
    Han R; Hao P; Wang L; Li J; Shui S; Wang Y; Ying M; Liu J; Tang X; Li X
    Exp Eye Res; 2019 Aug; 185():107684. PubMed ID: 31158382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transforming growth factor-β2-mediated mesenchymal transition in lens epithelial cells is repressed in the absence of RAGE.
    Nam MH; Pantcheva MB; Rankenberg J; Nagaraj RH
    Biochem J; 2021 Jun; 478(12):2285-2296. PubMed ID: 34143864
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeting the fibronectin type III repeats in tenascin-C inhibits epithelial-mesenchymal transition in the context of posterior capsular opacification.
    Tiwari A; Ram J; Luthra-Guptasarma M
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):272-83. PubMed ID: 25515583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FILIP1L-mediated cell apoptosis, epithelial-mesenchymal transition and extracellular matrix synthesis aggravate posterior capsular opacification.
    Jing R; Hu C; Qi T; Yue J; Wang G; Zhang M; Wen C; Pei C; Ma B
    Life Sci; 2021 Dec; 286():120061. PubMed ID: 34666037
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epithelial-mesenchymal transition as a therapeutic target for prevention of ocular tissue fibrosis.
    Saika S; Yamanaka O; Flanders KC; Okada Y; Miyamoto T; Sumioka T; Shirai K; Kitano A; Miyazaki K; Tanaka S; Ikeda K
    Endocr Metab Immune Disord Drug Targets; 2008 Mar; 8(1):69-76. PubMed ID: 18393925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A HGF‑derived peptide suppresses EMT in human lens epithelial cells via the TGF‑β/Smad and Akt/mTOR signaling pathways.
    Huang X; Wang Y; Zhang P; Zou H
    Mol Med Rep; 2020 Jul; 22(1):551-558. PubMed ID: 32377724
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fibroblast growth factor 2: roles of regulation of lens cell proliferation and epithelial-mesenchymal transition in response to injury.
    Tanaka T; Saika S; Ohnishi Y; Ooshima A; McAvoy JW; Liu CY; Azhar M; Doetschman T; Kao WW
    Mol Vis; 2004 Jul; 10():462-7. PubMed ID: 15273655
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transforming growth factor β1 signaling coincides with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the development of adenomyosis in mice.
    Shen M; Liu X; Zhang H; Guo SW
    Hum Reprod; 2016 Feb; 31(2):355-69. PubMed ID: 26689216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histone deacetylase inhibitors trichostatin A and vorinostat inhibit TGFβ2-induced lens epithelial-to-mesenchymal cell transition.
    Xie L; Santhoshkumar P; Reneker LW; Sharma KK
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):4731-40. PubMed ID: 24994865
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resveratrol Inhibits Wound Healing and Lens Fibrosis: A Putative Candidate for Posterior Capsule Opacification Prevention.
    Smith AJO; Eldred JA; Wormstone IM
    Invest Ophthalmol Vis Sci; 2019 Sep; 60(12):3863-3877. PubMed ID: 31529119
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ERK1/2-Dependent Gene Expression Contributing to TGFβ-Induced Lens EMT.
    Wojciechowski MC; Shu DY; Lovicu FJ
    Curr Eye Res; 2018 Aug; 43(8):986-997. PubMed ID: 29652528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Role of NLRP3 Inflammasome Activation in the Epithelial to Mesenchymal Transition Process During the Fibrosis.
    Alyaseer AAA; de Lima MHS; Braga TT
    Front Immunol; 2020; 11():883. PubMed ID: 32508821
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of Transforming Growth Factor-β/Smad-mediated Epithelial-Mesenchymal Transition by Celastrol Provides Protection against Bleomycin-induced Pulmonary Fibrosis.
    Divya T; Velavan B; Sudhandiran G
    Basic Clin Pharmacol Toxicol; 2018 Aug; 123(2):122-129. PubMed ID: 29394529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resveratrol attenuates renal injury and fibrosis by inhibiting transforming growth factor-β pathway on matrix metalloproteinase 7.
    Xiao Z; Chen C; Meng T; Zhang W; Zhou Q
    Exp Biol Med (Maywood); 2016 Jan; 241(2):140-6. PubMed ID: 26316584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new model of anterior subcapsular cataract: involvement of TGFbeta/Smad signaling.
    Shirai K; Saika S; Tanaka T; Okada Y; Flanders KC; Ooshima A; Ohnishi Y
    Mol Vis; 2006 Jun; 12():681-91. PubMed ID: 16807527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.