These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35656741)

  • 21. Enzyme-Powered Hollow Nanorobots for Active Microsampling Enabled by Thermoresponsive Polymer Gating.
    Liu X; Chen W; Zhao D; Liu X; Wang Y; Chen Y; Ma X
    ACS Nano; 2022 Jul; 16(7):10354-10363. PubMed ID: 35816232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoparticle-blockage-enabled rapid and reversible nanopore gating with tunable memory.
    Yazbeck R; Xu Y; Porter T; Duan C
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2200845119. PubMed ID: 35759673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional Nanorobot System for Active Therapeutic Delivery and Synergistic Chemo-photothermal Therapy.
    Jin Z; Nguyen KT; Go G; Kang B; Min HK; Kim SJ; Kim Y; Li H; Kim CS; Lee S; Park S; Kim KP; Huh KM; Song J; Park JO; Choi E
    Nano Lett; 2019 Dec; 19(12):8550-8564. PubMed ID: 31694378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores.
    Di Muccio G; Morozzo Della Rocca B; Chinappi M
    ACS Nano; 2022 Jun; 16(6):8716-8728. PubMed ID: 35587777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slip-Coupled Electroosmosis and Electrophoresis Dictate DNA Translocation Speed in Solid-State Nanopores.
    Ahmadi E; Sadeghi A; Chakraborty S
    Langmuir; 2023 Sep; 39(35):12292-12301. PubMed ID: 37603825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of electroosmotic flow through nanoporous self-assembled arrays.
    Bell K; Gomes M; Nazemifard N
    Electrophoresis; 2015 Aug; 36(15):1738-43. PubMed ID: 25964193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanorobot Swarms Made with Laser-Induced Graphene@Fe
    Zhang H; Guo Y; Chen Y; Xie B; Lai S; Liu H; Hou M; Ma L; Chen X; Wong CP
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39376076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electroosmosis Dominates Electrophoresis of Antibiotic Transport Across the Outer Membrane Porin F.
    Bafna JA; Pangeni S; Winterhalter M; Aksoyoglu MA
    Biophys J; 2020 Jun; 118(11):2844-2852. PubMed ID: 32348725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulation of Protein Translocation through Nanopores by Flow Field Control and Application to Nanopore Sensors.
    Hsu WL; Daiguji H
    Anal Chem; 2016 Sep; 88(18):9251-8. PubMed ID: 27571138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the origins of conductive pulse sensing inside a nanopore.
    Lastra LS; Bandara YMNDY; Nguyen M; Farajpour N; Freedman KJ
    Nat Commun; 2022 May; 13(1):2186. PubMed ID: 35562332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore.
    He Y; Tsutsui M; Scheicher RH; Fan C; Taniguchi M; Kawai T
    Biophys J; 2013 Aug; 105(3):776-82. PubMed ID: 23931325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Intelligent DNA Nanorobot with
    Ma W; Zhan Y; Zhang Y; Shao X; Xie X; Mao C; Cui W; Li Q; Shi J; Li J; Fan C; Lin Y
    Nano Lett; 2019 Jul; 19(7):4505-4517. PubMed ID: 31185573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micro and nanorobot-based drug delivery: an overview.
    Suhail M; Khan A; Rahim MA; Naeem A; Fahad M; Badshah SF; Jabar A; Janakiraman AK
    J Drug Target; 2022 Apr; 30(4):349-358. PubMed ID: 34706620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free manipulation system for nanorobot cluster based on complicated multi-coil electromagnetic actuator.
    Kim Y; Chae JK; Lee JH; Choi E; Lee YK; Song J
    Sci Rep; 2021 Oct; 11(1):19756. PubMed ID: 34611180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Intelligent DNA Nanorobot for Autonomous Anticoagulation.
    Yang L; Zhao Y; Xu X; Xu K; Zhang M; Huang K; Kang H; Lin HC; Yang Y; Han D
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17697-17704. PubMed ID: 32573062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the contribution of charged species at the outer surface to the ion current signal of nanopores: a theoretical study.
    Mao H; Ma Q; Xu H; Xu L; Du Q; Gao P; Xia F
    Analyst; 2021 Aug; 146(16):5089-5094. PubMed ID: 34297030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blobs form during the single-file transport of proteins across nanopores.
    Sauciuc A; Whittaker J; Tadema M; Tych K; Guskov A; Maglia G
    Proc Natl Acad Sci U S A; 2024 Sep; 121(38):e2405018121. PubMed ID: 39264741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting Brain Cancer Cells by Nanorobot, a Promising Nanovehicle: New Challenges and Future Perspectives.
    Kishore C; Bhadra P
    CNS Neurol Disord Drug Targets; 2021; 20(6):531-539. PubMed ID: 34042038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Group Behavior of Nanoparticles Translocating Multiple Nanopores.
    Wen C; Zeng S; Zhang Z; Zhang SL
    Anal Chem; 2018 Nov; 90(22):13483-13490. PubMed ID: 30372031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.