These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35656809)
1. Bias and Type I error Control in Correcting Treatment Effect for Treatment Switching Using Marginal Structural Models in Phase III Oncology Trials. Xu J; Liu G; Wang B J Biopharm Stat; 2022 Nov; 32(6):897-914. PubMed ID: 35656809 [TBL] [Abstract][Full Text] [Related]
2. Improved two-stage estimation to adjust for treatment switching in randomised trials: g-estimation to address time-dependent confounding. Latimer NR; White IR; Tilling K; Siebert U Stat Methods Med Res; 2020 Oct; 29(10):2900-2918. PubMed ID: 32223524 [TBL] [Abstract][Full Text] [Related]
3. The net benefit for time-to-event outcome in oncology clinical trials with treatment switching. Fukuda M; Sakamaki K; Oba K Clin Trials; 2023 Dec; 20(6):670-680. PubMed ID: 37455538 [TBL] [Abstract][Full Text] [Related]
4. Missing confounding data in marginal structural models: a comparison of inverse probability weighting and multiple imputation. Moodie EE; Delaney JA; Lefebvre G; Platt RW Int J Biostat; 2008; 4(1):Article 13. PubMed ID: 22462119 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Bias Analysis for a Misclassified Confounder: A Comparison Between Marginal Structural Models and Conditional Models for Point Treatments. Nab L; Groenwold RHH; van Smeden M; Keogh RH Epidemiology; 2020 Nov; 31(6):796-805. PubMed ID: 32826524 [TBL] [Abstract][Full Text] [Related]
6. Two-stage estimation to adjust for treatment switching in randomised trials: a simulation study investigating the use of inverse probability weighting instead of re-censoring. Latimer NR; Abrams KR; Siebert U BMC Med Res Methodol; 2019 Mar; 19(1):69. PubMed ID: 30935369 [TBL] [Abstract][Full Text] [Related]
7. Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models. Keogh RH; Gran JM; Seaman SR; Davies G; Vansteelandt S Stat Med; 2023 Jun; 42(13):2191-2225. PubMed ID: 37086186 [TBL] [Abstract][Full Text] [Related]
8. Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models. Yiu S; Su L Biometrics; 2022 Mar; 78(1):115-127. PubMed ID: 33247594 [TBL] [Abstract][Full Text] [Related]
9. Correcting for Measurement Error in Time-Varying Covariates in Marginal Structural Models. Kyle RP; Moodie EE; Klein MB; Abrahamowicz M Am J Epidemiol; 2016 Aug; 184(3):249-58. PubMed ID: 27416840 [TBL] [Abstract][Full Text] [Related]
10. Adjusting for treatment switching in randomised controlled trials - A simulation study and a simplified two-stage method. Latimer NR; Abrams KR; Lambert PC; Crowther MJ; Wailoo AJ; Morden JP; Akehurst RL; Campbell MJ Stat Methods Med Res; 2017 Apr; 26(2):724-751. PubMed ID: 25416688 [TBL] [Abstract][Full Text] [Related]
11. Missing Data in Marginal Structural Models: A Plasmode Simulation Study Comparing Multiple Imputation and Inverse Probability Weighting. Liu SH; Chrysanthopoulou SA; Chang Q; Hunnicutt JN; Lapane KL Med Care; 2019 Mar; 57(3):237-243. PubMed ID: 30664611 [TBL] [Abstract][Full Text] [Related]
12. The inverse-probability-of-censoring weighting (IPCW) adjusted win ratio statistic: an unbiased estimator in the presence of independent censoring. Dong G; Mao L; Huang B; Gamalo-Siebers M; Wang J; Yu G; Hoaglin DC J Biopharm Stat; 2020 Sep; 30(5):882-899. PubMed ID: 32552451 [TBL] [Abstract][Full Text] [Related]
13. Simulating longitudinal data from marginal structural models using the additive hazard model. Keogh RH; Seaman SR; Gran JM; Vansteelandt S Biom J; 2021 Oct; 63(7):1526-1541. PubMed ID: 33983641 [TBL] [Abstract][Full Text] [Related]
14. Adaptive truncated weighting for improving marginal structural model estimation of treatment effects informally censored by subsequent therapy. Bai X; Liu J; Li L; Faries D Pharm Stat; 2015; 14(6):448-54. PubMed ID: 26436533 [TBL] [Abstract][Full Text] [Related]
15. On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects. Blanche PF; Holt A; Scheike T Lifetime Data Anal; 2023 Apr; 29(2):441-482. PubMed ID: 35799026 [TBL] [Abstract][Full Text] [Related]
16. Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling. Neugebauer R; Fireman B; Roy JA; Raebel MA; Nichols GA; O'Connor PJ J Clin Epidemiol; 2013 Aug; 66(8 Suppl):S99-109. PubMed ID: 23849160 [TBL] [Abstract][Full Text] [Related]
17. Adjustment for treatment changes in epilepsy trials: A comparison of causal methods for time-to-event outcomes. Dodd S; Williamson P; White IR Stat Methods Med Res; 2019 Mar; 28(3):717-733. PubMed ID: 29117780 [TBL] [Abstract][Full Text] [Related]
18. Marginal Structural Models for Life-Course Theories and Social Epidemiology: Definitions, Sources of Bias, and Simulated Illustrations. Gilsanz P; Young JG; Glymour MM; Tchetgen Tchetgen EJ; Eng CW; Koenen KC; Kubzansky LD Am J Epidemiol; 2022 Jan; 191(2):349-359. PubMed ID: 34668974 [TBL] [Abstract][Full Text] [Related]
19. Dynamic marginal structural modeling to evaluate the comparative effectiveness of more or less aggressive treatment intensification strategies in adults with type 2 diabetes. Neugebauer R; Fireman B; Roy JA; O'Connor PJ; Selby JV Pharmacoepidemiol Drug Saf; 2012 May; 21 Suppl 2():99-113. PubMed ID: 22552985 [TBL] [Abstract][Full Text] [Related]
20. Fitting marginal structural models: estimating covariate-treatment associations in the reweighted data set can guide model fitting. Pullenayegum EM; Lam C; Manlhiot C; Feldman BM J Clin Epidemiol; 2008 Sep; 61(9):875-81. PubMed ID: 18486447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]