These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 35656935)
1. Target insertion depth of nasopharyngeal temperature probes in children: A prospective observational study analyzing magnetic resonance images. Miller C; Bräuer A; Asendorf T; Ernst M; von Gottberg P; Richter J; Saager L; Nemeth M Paediatr Anaesth; 2022 Sep; 32(9):1054-1061. PubMed ID: 35656935 [TBL] [Abstract][Full Text] [Related]
2. Working with estimation-formulas to predict nasopharyngeal airway insertion depth in children: Looking at magnetic resonance images - A prospective observational study (WEND:LI-Study). Nemeth M; Ernst M; Asendorf T; Richter J; von Gottberg P; Brandes IF; Miller C Resuscitation; 2021 Nov; 168():95-102. PubMed ID: 34600970 [TBL] [Abstract][Full Text] [Related]
3. A method for optimal depth of the nasopharyngeal temperature probe: the philtrum to tragus distance. Lim H; Lee JH; Son KK; Han YJ; Ko S Korean J Anesthesiol; 2014 Mar; 66(3):195-8. PubMed ID: 24729840 [TBL] [Abstract][Full Text] [Related]
4. Optimal Positioning of Nasopharyngeal Temperature Probes in Infants and Children: A Prospective Cohort Study. Zhong JW; Sessler DI; Mao G; Jerome A; Chandran N; Szmuk P Anesth Analg; 2023 May; 136(5):986-991. PubMed ID: 36730063 [TBL] [Abstract][Full Text] [Related]
5. Optimal nasopharyngeal temperature probe placement. Lee J; Lim H; Son KG; Ko S Anesth Analg; 2014 Oct; 119(4):875-879. PubMed ID: 25025586 [TBL] [Abstract][Full Text] [Related]
6. Estimation of nares-to-epiglottis distance for selecting an appropriate nasopharyngeal airway. Tseng WC; Lin WL; Cherng CH Medicine (Baltimore); 2019 Mar; 98(10):e14832. PubMed ID: 30855511 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Nasopharyngeal Temperature Measured at Fossa of Rosenmuller and Blindly Inserted Temperature Probe with Esophageal Temperature: A Cross-Sectional Study. Duggappa AKH; Mathew S; Gupta DN; Muhamed S; Nanjangud P; Kordcal AR Anesth Essays Res; 2018; 12(2):506-511. PubMed ID: 29962625 [TBL] [Abstract][Full Text] [Related]
8. Methodological investigation of measuring nasopharyngeal temperature as noninvasive brain temperature analogue in the neonate. Ko HK; Flemmer A; Haberl C; Simbruner G Intensive Care Med; 2001 Apr; 27(4):736-42. PubMed ID: 11398702 [TBL] [Abstract][Full Text] [Related]
9. Simple calculation of the optimal insertion depth of esophageal temperature probes in children. Hong SH; Lee J; Jung JY; Shim JW; Jung HS J Clin Monit Comput; 2020 Apr; 34(2):353-359. PubMed ID: 31144223 [TBL] [Abstract][Full Text] [Related]
10. Determination of insertion depth of flexible laryngeal mask airway in pediatric population-A prospective observational study. Lee JH; Oh HW; Song IK; Kim JT; Kim CS; Kim HS J Clin Anesth; 2017 Feb; 36():76-79. PubMed ID: 28183579 [TBL] [Abstract][Full Text] [Related]
11. Agreement between lower esophageal and nasopharyngeal temperatures in children ventilated with an endotracheal tube with leak. Snoek AP; Saffer E Paediatr Anaesth; 2016 Feb; 26(2):213-20. PubMed ID: 26669266 [TBL] [Abstract][Full Text] [Related]
12. Optimal Depth for Nasopharyngeal Temperature Probe Positioning. Wang M; Singh A; Qureshi H; Leone A; Mascha EJ; Sessler DI Anesth Analg; 2016 May; 122(5):1434-8. PubMed ID: 26974019 [TBL] [Abstract][Full Text] [Related]
13. Performance validation of a modified magnetic resonance imaging-compatible temperature probe in children. Nasr VG; Schumann R; Bonney I; Diaz L; Ahmed I Anesth Analg; 2012 Jun; 114(6):1230-4. PubMed ID: 22366850 [TBL] [Abstract][Full Text] [Related]
14. Guedel oropharyngeal airway: The validation of facial landmark-distances to estimate sizing in children - Visualisation by magnetic resonance imaging (GUEDEL-I): A prospective observational study. Nemeth M; Ernst M; Asendorf T; Wilmers S; Pancaro C; Kunze-Szikszay N; Miller C Resuscitation; 2023 Mar; 184():109702. PubMed ID: 36702339 [TBL] [Abstract][Full Text] [Related]
15. The nasopharyngeal airway: Estimation of the nares-to-mandible and nares-to-tragus distance in young children to assess current clinical practice. Johnson M; Miskovic A; Ray S; Chong K; Hickson M; Bingham B; Skellett S Resuscitation; 2019 Jul; 140():50-54. PubMed ID: 31063843 [TBL] [Abstract][Full Text] [Related]
16. The Optimal Length of Insertion for Central Venous Catheters Via the Right Internal Jugular Vein in Pediatric Cardiac Surgical Patients. Maddali MM; Al-Shamsi F; Arora NR; Panchatcharam SM J Cardiothorac Vasc Anesth; 2020 Sep; 34(9):2386-2391. PubMed ID: 32362548 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of predictive equations in guiding tracheal intubation depth in children: A prospective study. Khanna P; Garg H; Ray BR; Singh A; Kundu R; Sinha R Paediatr Anaesth; 2021 Dec; 31(12):1304-1309. PubMed ID: 34555230 [TBL] [Abstract][Full Text] [Related]
18. Comparison of temporal artery, nasopharyngeal, and axillary temperature measurement during anesthesia in children. Sahin SH; Duran R; Sut N; Colak A; Acunas B; Aksu B J Clin Anesth; 2012 Dec; 24(8):647-51. PubMed ID: 23228869 [TBL] [Abstract][Full Text] [Related]
19. A comparison of the temperature difference according to the placement of a nasopharyngeal temperature probe. Lim H; Kim B; Kim DC; Lee SK; Ko S Korean J Anesthesiol; 2016 Aug; 69(4):357-61. PubMed ID: 27482312 [TBL] [Abstract][Full Text] [Related]
20. Determination of the optimal depth of a left internal jugular venous catheter in infants: A prospective observational study. Lee JH; Byon HJ; Choi YH; Song IK; Kim JT; Kim HS Paediatr Anaesth; 2017 Dec; 27(12):1220-1226. PubMed ID: 29044814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]