These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35657030)

  • 1. Metabolic engineering of Bacillus subtilis for high-level production of uridine from glucose.
    Wang C; Xu J; Ban R
    Lett Appl Microbiol; 2022 Oct; 75(4):824-830. PubMed ID: 35657030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improve uridine production by modifying related metabolic pathways in Bacillus subtilis.
    Zhang X; Wang C; Liu L; Ban R
    Biotechnol Lett; 2020 Apr; 42(4):551-555. PubMed ID: 31993847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of uridine production in Bacillus subtilis by metabolic engineering.
    Wang Y; Ma R; Liu L; He L; Ban R
    Biotechnol Lett; 2018 Jan; 40(1):151-155. PubMed ID: 29038923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Bacillus subtilis for the co-production of uridine and acetoin.
    Fan X; Wu H; Jia Z; Li G; Li Q; Chen N; Xie X
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8753-8762. PubMed ID: 30120523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis.
    Ma W; Liu Y; Lv X; Li J; Du G; Liu L
    Microb Cell Fact; 2019 Jan; 18(1):1. PubMed ID: 30609921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis.
    Zhu H; Yang SM; Yuan ZM; Ban R
    Microb Cell Fact; 2015 Apr; 14():54. PubMed ID: 25890046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving riboflavin production by modifying related metabolic pathways in Bacillus subtilis.
    Xu J; Wang C; Ban R
    Lett Appl Microbiol; 2022 Jan; 74(1):78-83. PubMed ID: 34704264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Modification in de novo purine pathway for adenosine accumulation by Bacillus subtilis].
    Liu Y; He J; Xie X; Xu Q; Zhang C; Chen N
    Wei Sheng Wu Xue Bao; 2014 Jun; 54(6):641-7. PubMed ID: 25272812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.
    Wang M; Fu J; Zhang X; Chen T
    Biotechnol Lett; 2012 Oct; 34(10):1877-85. PubMed ID: 22714279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine.
    Meng W; Wang R; Xiao D
    Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for high-yield uridine production.
    Wu H; Li Y; Ma Q; Li Q; Jia Z; Yang B; Xu Q; Fan X; Zhang C; Chen N; Xie X
    Metab Eng; 2018 Sep; 49():248-256. PubMed ID: 30189293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2,3-Butanediol production from cellobiose using exogenous beta-glucosidase-expressing Bacillus subtilis.
    Tanimura K; Takashima S; Matsumoto T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5781-9. PubMed ID: 26830100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of low-molecular-weight mannan using metabolically engineered Bacillus subtilis 168.
    Jin P; Liang Z; Li H; Chen C; Xue Y; Du Q
    Carbohydr Polym; 2021 Jan; 251():117115. PubMed ID: 33142650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis.
    Zhang X; Zhang R; Bao T; Yang T; Xu M; Li H; Xu Z; Rao Z
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1067-76. PubMed ID: 23836140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis.
    Yuan P; Cui S; Liu Y; Li J; Lv X; Liu L; Du G
    Enzyme Microb Technol; 2020 Nov; 141():109652. PubMed ID: 33051011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved biosynthesis of heme in Bacillus subtilis through metabolic engineering assisted fed-batch fermentation.
    Yang S; Wang A; Li J; Shao Y; Sun F; Li S; Cao K; Liu H; Xiong P; Gao Z
    Microb Cell Fact; 2023 May; 22(1):102. PubMed ID: 37198628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.