These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35657030)

  • 21. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis.
    Białkowska AM; Jędrzejczak-Krzepkowska M; Gromek E; Krysiak J; Sikora B; Kalinowska H; Kubik C; Schütt F; Turkiewicz M
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2663-76. PubMed ID: 26590588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered
    Wu H; Tian D; Fan X; Fan W; Zhang Y; Jiang S; Wen C; Ma Q; Chen N; Xie X
    ACS Synth Biol; 2020 Jul; 9(7):1813-1822. PubMed ID: 32470291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Food-grade expression of an iron-containing acid urease in Bacillus subtilis.
    Liu Q; Jin X; Fang F; Li J; Du G; Kang Z
    J Biotechnol; 2019 Mar; 293():66-71. PubMed ID: 30703469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of key-gene modification on uridine biosynthesis in Bacillus subtilis].
    Yang S; Guo L; Ban R; Xie X
    Wei Sheng Wu Xue Bao; 2016 Jan; 56(1):56-67. PubMed ID: 27305780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.
    Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis.
    Vahidinasab M; Lilge L; Reinfurt A; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R
    Microb Cell Fact; 2020 Nov; 19(1):205. PubMed ID: 33167976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway.
    Zhang M; Zhao X; Chen X; Li M; Wang X
    Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.
    Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L
    Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains.
    Liu DF; Ai GM; Zheng QX; Liu C; Jiang CY; Liu LX; Zhang B; Liu YM; Yang C; Liu SJ
    Microb Cell Fact; 2014 Mar; 13(1):40. PubMed ID: 24628944
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism.
    Romero S; Merino E; Bolívar F; Gosset G; Martinez A
    Appl Environ Microbiol; 2007 Aug; 73(16):5190-8. PubMed ID: 17586670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combinatorial metabolic engineering of Bacillus subtilis enables the efficient biosynthesis of isoquercitrin from quercetin.
    Niu T; Huang C; Wang R; Yang L; Zhao S; Wang Z
    Microb Cell Fact; 2024 Apr; 23(1):114. PubMed ID: 38641799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.
    Yan P; Wu Y; Yang L; Wang Z; Chen T
    Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production.
    Liu Y; Zhu Y; Li J; Shin HD; Chen RR; Du G; Liu L; Chen J
    Metab Eng; 2014 May; 23():42-52. PubMed ID: 24560814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning and enhancing production of a detergent- and organic-solvent-resistant nattokinase from Bacillus subtilis VTCC-DVN-12-01 by using an eight-protease-gene-deficient Bacillus subtilis WB800.
    Nguyen TT; Quyen TD; Le HT
    Microb Cell Fact; 2013 Sep; 12():79. PubMed ID: 24021098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a Glycerol-Inducible Expression System for High-Yield Heterologous Protein Production in Bacillus subtilis.
    Han L; Chen Q; Luo J; Cui W; Zhou Z
    Microbiol Spectr; 2022 Oct; 10(5):e0132222. PubMed ID: 36036634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures.
    Chen T; Liu WX; Fu J; Zhang B; Tang YJ
    J Biotechnol; 2013 Dec; 168(4):499-505. PubMed ID: 24120578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters.
    Jiao S; Li X; Yu H; Yang H; Li X; Shen Z
    Biotechnol Bioeng; 2017 Apr; 114(4):832-842. PubMed ID: 27723092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening.
    Fan X; Wu H; Li G; Yuan H; Zhang H; Li Y; Xie X; Chen N
    PLoS One; 2017; 12(5):e0176545. PubMed ID: 28472077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. De novo engineering riboflavin production Bacillus subtilis by overexpressing the downstream genes in the purine biosynthesis pathway.
    Liu C; Xia M; Fang H; Xu F; Wang S; Zhang D
    Microb Cell Fact; 2024 May; 23(1):159. PubMed ID: 38822377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of Squalene in
    Song Y; Guan Z; van Merkerk R; Pramastya H; Abdallah II; Setroikromo R; Quax WJ
    J Agric Food Chem; 2020 Apr; 68(15):4447-4455. PubMed ID: 32208656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.