These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35657090)

  • 41. The Xer/dif site-specific recombination system of Campylobacter jejuni.
    Leroux M; Rezoug Z; Szatmari G
    Mol Genet Genomics; 2013 Oct; 288(10):495-502. PubMed ID: 23861023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Salmonella typhimurium specifies a circular chromosome dimer resolution system which is homologous to the Xer site-specific recombination system of Escherichia coli.
    Hayes F; Lubetzki SA; Sherratt DJ
    Gene; 1997 Oct; 198(1-2):105-10. PubMed ID: 9370270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Xer-mediated site-specific recombination in vitro.
    Colloms SD; McCulloch R; Grant K; Neilson L; Sherratt DJ
    EMBO J; 1996 Mar; 15(5):1172-81. PubMed ID: 8605888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase.
    Yates J; Zhekov I; Baker R; Eklund B; Sherratt DJ; Arciszewska LK
    Mol Microbiol; 2006 Mar; 59(6):1754-66. PubMed ID: 16553881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. C-terminal interactions between the XerC and XerD site-specific recombinases.
    Spiers AJ; Sherratt DJ
    Mol Microbiol; 1999 Jun; 32(5):1031-42. PubMed ID: 10361305
    [TBL] [Abstract][Full Text] [Related]  

  • 46. VGJphi integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains.
    Das B; Bischerour J; Barre FX
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2516-21. PubMed ID: 21262799
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes.
    Bui D; Ramiscal J; Trigueros S; Newmark JS; Do A; Sherratt DJ; Tolmasky ME
    J Bacteriol; 2006 Apr; 188(8):2812-20. PubMed ID: 16585742
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An efficient method of selectable marker gene excision by Xer recombination for gene replacement in bacterial chromosomes.
    Bloor AE; Cranenburgh RM
    Appl Environ Microbiol; 2006 Apr; 72(4):2520-5. PubMed ID: 16597952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Xer site-specific recombination in vitro.
    Arciszewska LK; Sherratt DJ
    EMBO J; 1995 May; 14(9):2112-20. PubMed ID: 7744017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional analysis of the C-terminal domains of the site-specific recombinases XerC and XerD.
    Ferreira H; Butler-Cole B; Burgin A; Baker R; Sherratt DJ; Arciszewska LK
    J Mol Biol; 2003 Jun; 330(1):15-27. PubMed ID: 12818199
    [TBL] [Abstract][Full Text] [Related]  

  • 51. XerD-dependent integration of a novel filamentous phage Cf2 into the Xanthomonas citri genome.
    Yeh TY
    Virology; 2020 Sep; 548():160-167. PubMed ID: 32838937
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse.
    Diagne CT; Salhi M; Crozat E; Salomé L; Cornet F; Rousseau P; Tardin C
    Nucleic Acids Res; 2014 Feb; 42(3):1721-32. PubMed ID: 24214995
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration.
    Bischerour J; Spangenberg C; Barre FX
    EMBO J; 2012 Sep; 31(18):3757-67. PubMed ID: 22863778
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12.
    Blakely G; May G; McCulloch R; Arciszewska LK; Burke M; Lovett ST; Sherratt DJ
    Cell; 1993 Oct; 75(2):351-61. PubMed ID: 8402918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli.
    Kennedy SP; Chevalier F; Barre FX
    Mol Microbiol; 2008 May; 68(4):1018-28. PubMed ID: 18363794
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: an enzymatic switch in site-specific recombination.
    Hallet B; Arciszewska LK; Sherratt DJ
    Mol Cell; 1999 Dec; 4(6):949-59. PubMed ID: 10635320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. FtsK-dependent XerCD-dif recombination unlinks replication catenanes in a stepwise manner.
    Shimokawa K; Ishihara K; Grainge I; Sherratt DJ; Vazquez M
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):20906-11. PubMed ID: 24218579
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extent of the activity domain and possible roles of FtsK in the Escherichia coli chromosome terminus.
    Corre J; Louarn JM
    Mol Microbiol; 2005 Jun; 56(6):1539-48. PubMed ID: 15916604
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Site-specific recombination in the replication terminus region of Escherichia coli: functional replacement of dif.
    Leslie NR; Sherratt DJ
    EMBO J; 1995 Apr; 14(7):1561-70. PubMed ID: 7729430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cloning and characterisation of the Proteus mirabilis xerD gene.
    Villion M; Szatmari G
    FEMS Microbiol Lett; 1998 Jul; 164(1):83-90. PubMed ID: 9675854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.