These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35657164)

  • 1. Evolution and Single-Droplet Analysis of Fuel-Driven Compartments by Droplet-Based Microfluidics.
    Bergmann AM; Donau C; Späth F; Jahnke K; Göpfrich K; Boekhoven J
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202203928. PubMed ID: 35657164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active coacervate droplets as a model for membraneless organelles and protocells.
    Donau C; Späth F; Sosson M; Kriebisch BAK; Schnitter F; Tena-Solsona M; Kang HS; Salibi E; Sattler M; Mutschler H; Boekhoven J
    Nat Commun; 2020 Oct; 11(1):5167. PubMed ID: 33056997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets.
    Linsenmeier M; Kopp MRG; Grigolato F; Emmanoulidis L; Liu D; Zürcher D; Hondele M; Weis K; Capasso Palmiero U; Arosio P
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14489-14494. PubMed ID: 31334587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-programmed enzyme phase separation and multiphase coacervate droplet organization.
    Karoui H; Seck MJ; Martin N
    Chem Sci; 2021 Jan; 12(8):2794-2802. PubMed ID: 34164043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active coacervate droplets are protocells that grow and resist Ostwald ripening.
    Nakashima KK; van Haren MHI; André AAM; Robu I; Spruijt E
    Nat Commun; 2021 Jun; 12(1):3819. PubMed ID: 34155210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase Transitions in Chemically Fueled, Multiphase Complex Coacervate Droplets.
    Donau C; Späth F; Stasi M; Bergmann AM; Boekhoven J
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211905. PubMed ID: 36067054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics.
    Taylor N; Elbaum-Garfinkle S; Vaidya N; Zhang H; Stone HA; Brangwynne CP
    Soft Matter; 2016 Nov; 12(45):9142-9150. PubMed ID: 27791212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoswitchable Molecular Communication between Programmable DNA-Based Artificial Membraneless Organelles.
    Zhao QH; Cao FH; Luo ZH; Huck WTS; Deng NN
    Angew Chem Int Ed Engl; 2022 Mar; 61(14):e202117500. PubMed ID: 35090078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible photocontrol of DNA coacervation.
    Lafon S; Martin N
    Methods Enzymol; 2021; 646():329-351. PubMed ID: 33453931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Did the exposure of coacervate droplets to rain make them the first stable protocells?
    Agrawal A; Radakovic A; Vonteddu A; Rizvi S; Huynh VN; Douglas JF; Tirrell MV; Karim A; Szostak JW
    Sci Adv; 2024 Aug; 10(34):eadn9657. PubMed ID: 39167649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible generation of coacervate droplets in an enzymatic network.
    Nakashima KK; Baaij JF; Spruijt E
    Soft Matter; 2018 Jan; 14(3):361-367. PubMed ID: 29199758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating Nucleic Acid Catalysis Using Active Droplets.
    Holtmannspötter AL; Machatzke C; Begemann C; Salibi E; Donau C; Späth F; Boekhoven J; Mutschler H
    Angew Chem Int Ed Engl; 2024 Nov; 63(47):e202412534. PubMed ID: 39119638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing negative feedback loops in enzymatic coacervate droplets.
    Modi N; Chen S; Adjei INA; Franco BL; Bishop KJM; Obermeyer AC
    Chem Sci; 2023 May; 14(18):4735-4744. PubMed ID: 37181760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition.
    Kojima T; Takayama S
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32782-32791. PubMed ID: 30179001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-active liquid coacervate microdroplets as artificial membraneless organelles for intracellular ROS scavenging.
    Chen Y; Yuan M; Zhang Y; Zhou S; Wang K; Wu Z; Liu J
    Biomater Sci; 2022 Aug; 10(16):4588-4595. PubMed ID: 35792669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water.
    van Swaay D; Tang TY; Mann S; de Mello A
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8398-401. PubMed ID: 26012895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity.
    Jacobs MI; Jira ER; Schroeder CM
    Langmuir; 2021 Dec; 37(49):14323-14335. PubMed ID: 34856104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coacervate Droplets for Synthetic Cells.
    Lin Z; Beneyton T; Baret JC; Martin N
    Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles.
    Choi S; Meyer MO; Bevilacqua PC; Keating CD
    Nat Chem; 2022 Oct; 14(10):1110-1117. PubMed ID: 35773489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.