BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35657512)

  • 1. Live Monitoring of ROS-Induced Cytosolic Redox Changes with roGFP2-Based Sensors in Plants.
    Ugalde JM; Fecker L; Schwarzländer M; Müller-Schüssele SJ; Meyer AJ
    Methods Mol Biol; 2022; 2526():65-85. PubMed ID: 35657512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fluorescent protein sensor roGFP2-Orp1 monitors in vivo H
    Nietzel T; Elsässer M; Ruberti C; Steinbeck J; Ugalde JM; Fuchs P; Wagner S; Ostermann L; Moseler A; Lemke P; Fricker MD; Müller-Schüssele SJ; Moerschbacher BM; Costa A; Meyer AJ; Schwarzländer M
    New Phytol; 2019 Feb; 221(3):1649-1664. PubMed ID: 30347449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast-derived photo-oxidative stress causes changes in H2O2 and EGSH in other subcellular compartments.
    Ugalde JM; Fuchs P; Nietzel T; Cutolo EA; Homagk M; Vothknecht UC; Holuigue L; Schwarzländer M; Müller-Schüssele SJ; Meyer AJ
    Plant Physiol; 2021 May; 186(1):125-141. PubMed ID: 33793922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium in Drosophila Neuron Subtypes Using Redox-Sensitive Fluorophores and 3D Imaging.
    Buhlman LM; Keoseyan PP; Houlihan KL; Juba AN
    Methods Mol Biol; 2021; 2276():113-127. PubMed ID: 34060036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time quantification of subcellular H
    Panieri E; Millia C; Santoro MM
    Free Radic Biol Med; 2017 Aug; 109():189-200. PubMed ID: 28192232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local redox environment beneath biological membranes probed by palmitoylated-roGFP.
    Hatori Y; Inouye S; Akagi R; Seyama T
    Redox Biol; 2018 Apr; 14():679-685. PubMed ID: 29179107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity and dynamics of H
    Vogelsang L; Eirich J; Finkemeier I; Dietz KJ
    Redox Biol; 2024 Jun; 72():103141. PubMed ID: 38599017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells.
    Fernández-Puente E; Palomero J
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic in vitro assessment of responses of roGFP2-based probes to physiologically relevant oxidant species.
    Müller A; Schneider JF; Degrossoli A; Lupilova N; Dick TP; Leichert LI
    Free Radic Biol Med; 2017 May; 106():329-338. PubMed ID: 28242229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time imaging of the intracellular glutathione redox potential in the malaria parasite Plasmodium falciparum.
    Kasozi D; Mohring F; Rahlfs S; Meyer AJ; Becker K
    PLoS Pathog; 2013; 9(12):e1003782. PubMed ID: 24348249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes.
    Roma LP; Deponte M; Riemer J; Morgan B
    Antioxid Redox Signal; 2018 Aug; 29(6):552-568. PubMed ID: 29160083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring E(GSH) and H2O2 with roGFP2-based redox probes.
    Morgan B; Sobotta MC; Dick TP
    Free Radic Biol Med; 2011 Dec; 51(11):1943-51. PubMed ID: 21964034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.
    Meyer AJ; Brach T; Marty L; Kreye S; Rouhier N; Jacquot JP; Hell R
    Plant J; 2007 Dec; 52(5):973-86. PubMed ID: 17892447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analyzing the Redox Status of Intracellular Glutathione and Its Application to an Intestinal Bowel Disease Model].
    Hatori Y
    Yakugaku Zasshi; 2019; 139(12):1523-1530. PubMed ID: 31787639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring intracellular redox changes in ozone-exposed airway epithelial cells.
    Gibbs-Flournoy EA; Simmons SO; Bromberg PA; Dick TP; Samet JM
    Environ Health Perspect; 2013 Mar; 121(3):312-7. PubMed ID: 23249900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes.
    Lismont C; Walton PA; Fransen M
    Methods Mol Biol; 2017; 1595():151-164. PubMed ID: 28409459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organelle-targeted biosensors reveal distinct oxidative events during pattern-triggered immune responses.
    Arnaud D; Deeks MJ; Smirnoff N
    Plant Physiol; 2023 Apr; 191(4):2551-2569. PubMed ID: 36582183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized real-time monitoring of glutathione redox status in single pyramidal neurons in organotypic hippocampal slices during oxygen-glucose deprivation and reperfusion.
    Yin B; Barrionuevo G; Weber SG
    ACS Chem Neurosci; 2015 Nov; 6(11):1838-48. PubMed ID: 26291433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute nutrient regulation of the mitochondrial glutathione redox state in pancreatic β-cells.
    Takahashi HK; Santos LR; Roma LP; Duprez J; Broca C; Wojtusciszyn A; Jonas JC
    Biochem J; 2014 Jun; 460(3):411-23. PubMed ID: 24678915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidase-2 does not contribute to β-cell glucotoxicity in cultured pancreatic islets from C57BL/6J mice.
    de Souza AH; Santos LRB; Roma LP; Bensellam M; Carpinelli AR; Jonas JC
    Mol Cell Endocrinol; 2017 Jan; 439():354-362. PubMed ID: 27664519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.