These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35657552)

  • 1. Cell-shape assemblage and nanostructure of akaganéite bioformed in FeCl
    Xiong H; Peng S; Zhang B
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75566-75574. PubMed ID: 35657552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells.
    Xiong H; Liao Y; Zhou L
    Environ Sci Technol; 2008 Dec; 42(23):8681-6. PubMed ID: 19192781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of nanocrystal akaganéite from FeCl2 solution oxidized by Acidithiobacillus ferrooxidans cells.
    Xiong H; Liao Y; Zhou L; Xu Y; Wang S
    Environ Sci Technol; 2008 Jun; 42(11):4165-9. PubMed ID: 18589982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions.
    Jones FS; Bigham JM; Gramp JP; Tuovinen OH
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption of uranium(VI) from aqueous solutions by akaganeite.
    Yusan SD; Akyil S
    J Hazard Mater; 2008 Dec; 160(2-3):388-95. PubMed ID: 18406521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods.
    Brayner R; Yéprémian C; Djediat C; Coradin T; Herbst F; Livage J; Fiévet F; Couté A
    Langmuir; 2009 Sep; 25(17):10062-7. PubMed ID: 19572505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition and structure of iron oxidation surface layers produced in weak acidic solutions.
    Montes Atenas G; Mielczarski E; Mielczarski JA
    J Colloid Interface Sci; 2005 Sep; 289(1):157-70. PubMed ID: 15922350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of nanospindle-akaganéite and its photocatalytic degradation for methyl orange.
    Xiong H; Shen X; Cui C; Cheng L; Xu Y
    Water Sci Technol; 2020 Aug; 82(3):481-491. PubMed ID: 32960793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment.
    Satapanajaru T; Shea PJ; Comfort SD; Roh Y
    Environ Sci Technol; 2003 Nov; 37(22):5219-27. PubMed ID: 14655711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions].
    Zhou SG; Zhou LX; Chen FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):367-70. PubMed ID: 17514978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chloride acclimation on iron oxyhydroxides and cell morphology during cultivation of Acidithiobacillus ferrooxidans.
    Xiong H; Guo R
    Environ Sci Technol; 2011 Jan; 45(1):235-40. PubMed ID: 21128632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate.
    Li X; Wang C; Zeng Y; Li P; Xie T; Zhang Y
    J Hazard Mater; 2016 Nov; 317():563-569. PubMed ID: 27344257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Spectral analysis of FeOOH prepared through hydrolysis and neutralization of ferric solutions under different conditions].
    Xiong HX; Liang JR; Xu YQ; Zhou LX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):2005-9. PubMed ID: 19798993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of oxygen supply in jarosite biosynthesis promoted by Acidithiobacillus ferrooxidans.
    Hou Q; Fang D; Liang J; Zhou L
    PLoS One; 2015; 10(3):e0120966. PubMed ID: 25807372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive ligand exchange on akaganéite surfaces enriches bulk chloride loadings.
    Song X; Boily JF
    J Colloid Interface Sci; 2012 Jun; 376(1):331-3. PubMed ID: 22459024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.
    Li X; Mercado R; Kernan T; West AC; Banta S
    Biotechnol Bioeng; 2014 Oct; 111(10):1940-8. PubMed ID: 24771134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of akaganeite nanorods and their transformation to sphere shape hematite.
    Chen M; Jiang J; Zhou X; Diao G
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3942-8. PubMed ID: 19049155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation.
    Fu H; Quan X
    Chemosphere; 2006 Apr; 63(3):403-10. PubMed ID: 16293289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of As(V) ions by akaganéite-type nanocrystals.
    Deliyanni EA; Bakoyannakis DN; Zouboulis AI; Matis KA
    Chemosphere; 2003 Jan; 50(1):155-63. PubMed ID: 12656241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.