These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3565760)

  • 1. Oxidation of dopamine and 4-methylcatechol at carbon fiber disk electrodes.
    Michael AC; Justice JB
    Anal Chem; 1987 Feb; 59(3):405-10. PubMed ID: 3565760
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes.
    Maldonado S; Morin S; Stevenson KJ
    Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of 4-methylcatechol: implications for the oxidation of catecholamines.
    Li G; Zhang H; Sader F; Vadhavkar N; Njus D
    Biochemistry; 2007 Jun; 46(23):6978-83. PubMed ID: 17503772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A green method for the electroorganic synthesis of new 1,3-Indandione derivatives.
    Moghaddam AB; Ganjali MR; Norouzi P; Latifi M
    Chem Pharm Bull (Tokyo); 2006 Oct; 54(10):1391-6. PubMed ID: 17015975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. beta-Sonogel-carbon electrodes: a new alternative for the electrochemical determination of catecholamines.
    Izaoumen N; Cubillana-Aguilera LM; Naranjo-Rodríguez I; de Cisneros JL; Bouchta D; Temsamani KR; Palacios-Santander JM
    Talanta; 2009 Apr; 78(2):370-6. PubMed ID: 19203597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting in vivo electrochemistry: electrode-tissue interaction and the ascorbate amplification effect.
    Echizen H; Freed CR
    Life Sci; 1986 Jul; 39(1):77-89. PubMed ID: 2425210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry.
    Pihel K; Walker QD; Wightman RM
    Anal Chem; 1996 Jul; 68(13):2084-9. PubMed ID: 9027223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotensin binding to dopamine.
    Adachi DK; Kalivas PW; Schenk JO
    J Neurochem; 1990 Apr; 54(4):1321-8. PubMed ID: 2313290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternating current voltammetry of dopamine and ascorbic acid at carbon paste and stearic acid modified carbon paste electrodes.
    Gelbert MB; Curran DJ
    Anal Chem; 1986 May; 58(6):1028-32. PubMed ID: 3717566
    [No Abstract]   [Full Text] [Related]  

  • 10. Heterogeneous mechanisms of the oxidation of catechols and ascorbic acid at carbon electrodes.
    Deakin MR; Kovach PM; Stutts KJ; Wightman RM
    Anal Chem; 1986 Jun; 58(7):1474-80. PubMed ID: 3728997
    [No Abstract]   [Full Text] [Related]  

  • 11. Application of multi-walled carbon nanotubes modified carbon ionic liquid electrode for electrocatalytic oxidation of dopamine.
    Li Y; Liu X; Liu X; Mai N; Li Y; Wei W; Cai Q
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):402-6. PubMed ID: 21831611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anodic oxidation of catechols in the presence of alpha-oxoketene N,N-acetals with a tetrahydropyrimidine ring: selective alpha-arylation reaction.
    Zeng CC; Ping DW; Hu LM; Song XQ; Zhong RG
    Org Biomol Chem; 2010 May; 8(10):2465-72. PubMed ID: 20448907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and mediated electrochemistry of peroxidase and its electrocatalysis on a variety of screen-printed carbon electrodes: amperometric hydrogen peroxide and phenols biosensor.
    Chekin F; Gorton L; Tapsobea I
    Anal Bioanal Chem; 2015 Jan; 407(2):439-46. PubMed ID: 25374125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine.
    Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR
    Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo electrochemical detection of catechols in several dopaminergic brain regions of anaesthetized rats.
    Buda M; Gonon F; Cespuglio R; Jouvet M; Pujol JF
    Eur J Pharmacol; 1981 Jul; 73(1):61-8. PubMed ID: 7318889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the buffering capacity of the supporting electrolyte on the electrochemical oxidation of dopamine and 4-methylcatechol in aqueous and nonaqueous solvents.
    Chen S; Tai KY; Webster RD
    Chem Asian J; 2011 Jun; 6(6):1492-9. PubMed ID: 21557485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High sensitivity measurement of brain catechols and indoles in vivo using electrochemically treated carbon-fiber electrodes.
    Suaud-Chagny MF; Cespuglio R; Rivot JP; Buda M; Gonon F
    J Neurosci Methods; 1993 Jul; 48(3):241-50. PubMed ID: 8412306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide.
    Antiochia R; Lavagnini I; Pastore P; Magno F
    Bioelectrochemistry; 2004 Sep; 64(2):157-63. PubMed ID: 15296789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permselectivity and ion-exchange properties of Eastman-AQ polymers on glassy carbon electrodes.
    Wang J; Golden T
    Anal Chem; 1989 Jul; 61(13):1397-400. PubMed ID: 2774192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine.
    Huang Q; Hu S; Zhang H; Chen J; He Y; Li F; Weng W; Ni J; Bao X; Lin Y
    Analyst; 2013 Sep; 138(18):5417-23. PubMed ID: 23833763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.