BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 35657706)

  • 21. Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica.
    Okubo T; Fukushima S; Itakura M; Oshima K; Longtonglang A; Teaumroong N; Mitsui H; Hattori M; Hattori R; Hattori T; Minamisawa K
    Appl Environ Microbiol; 2013 Apr; 79(8):2542-51. PubMed ID: 23396330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emergence of β-rhizobia as new root nodulating bacteria in legumes and current status of the legume-rhizobium host specificity dogma.
    Hassen AI; Lamprecht SC; Bopape FL
    World J Microbiol Biotechnol; 2020 Feb; 36(3):40. PubMed ID: 32095903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of Bradyrhizobium-Aeschynomene mutualism: living testimony of the ancient world or highly evolved state?
    Okubo T; Fukushima S; Minamisawa K
    Plant Cell Physiol; 2012 Dec; 53(12):2000-7. PubMed ID: 23161855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbiome of Nodules and Roots of Soybean and Common Bean: Searching for Differences Associated with Contrasting Performances in Symbiotic Nitrogen Fixation.
    Bender FR; Alves LC; da Silva JFM; Ribeiro RA; Pauli G; Nogueira MA; Hungria M
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The native distribution of a common legume shrub is limited by the range of its nitrogen-fixing mutualist.
    Alon M; Waitz Y; Finkel OM; Sheffer E
    New Phytol; 2024 Apr; 242(1):77-92. PubMed ID: 38339826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application.
    Chen WF; Wang ET; Ji ZJ; Zhang JJ
    J Appl Microbiol; 2021 Aug; 131(2):553-563. PubMed ID: 33300250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of the plant hormone gibberellin by rhizobia increases host legume nodule size.
    Nett RS; Bender KS; Peters RJ
    ISME J; 2022 Jul; 16(7):1809-1817. PubMed ID: 35414717
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Zhang Z; Li Y; Pan X; Shao S; Liu W; Wang ET; Xie Z
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31562167
    [No Abstract]   [Full Text] [Related]  

  • 29. Mechanisms underlying legume-rhizobium symbioses.
    Yang J; Lan L; Jin Y; Yu N; Wang D; Wang E
    J Integr Plant Biol; 2022 Feb; 64(2):244-267. PubMed ID: 34962095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coevolution in Rhizobium-legume symbiosis?
    Martínez-Romero E
    DNA Cell Biol; 2009 Aug; 28(8):361-70. PubMed ID: 19485766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytohormone regulation of legume-rhizobia interactions.
    Ferguson BJ; Mathesius U
    J Chem Ecol; 2014 Jul; 40(7):770-90. PubMed ID: 25052910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic changes of rhizobia in legume nodules.
    Prell J; Poole P
    Trends Microbiol; 2006 Apr; 14(4):161-8. PubMed ID: 16520035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimal gene set from
    Geddes BA; Kearsley JVS; Huang J; Zamani M; Muhammed Z; Sather L; Panchal AK; diCenzo GC; Finan TM
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33384333
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids.
    Oono R; Denison RF
    Plant Physiol; 2010 Nov; 154(3):1541-8. PubMed ID: 20837702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bacterial RuBisCO is required for efficient Bradyrhizobium/Aeschynomene symbiosis.
    Gourion B; Delmotte N; Bonaldi K; Nouwen N; Vorholt JA; Giraud E
    PLoS One; 2011; 6(7):e21900. PubMed ID: 21750740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.
    Hao X; Taghavi S; Xie P; Orbach MJ; Alwathnani HA; Rensing C; Wei G
    Int J Phytoremediation; 2014; 16(2):179-202. PubMed ID: 24912209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Application of rhizobia-legume symbiosis for remediation of heavy-metal contaminated soils].
    Wei G; Ma Z
    Wei Sheng Wu Xue Bao; 2010 Nov; 50(11):1421-30. PubMed ID: 21268885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities.
    Hollowell AC; Regus JU; Turissini D; Gano-Cohen KA; Bantay R; Bernardo A; Moore D; Pham J; Sachs JL
    Proc Biol Sci; 2016 Apr; 283(1829):. PubMed ID: 27122562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Competitive interference among rhizobia reduces benefits to hosts.
    Rahman A; Manci M; Nadon C; Perez IA; Farsamin WF; Lampe MT; Le TH; Torres Martínez L; Weisberg AJ; Chang JH; Sachs JL
    Curr Biol; 2023 Jul; 33(14):2988-3001.e4. PubMed ID: 37490853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport and metabolism in legume-rhizobia symbioses.
    Udvardi M; Poole PS
    Annu Rev Plant Biol; 2013; 64():781-805. PubMed ID: 23451778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.