These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35657710)

  • 1. Interplay of Local Heating, Nanoconfinement, and Tunable Liquid-Wall Interactions Drive Rapid Imbibition and Pronounced Mixing Between Two Immiscible Liquids.
    Ishraaq R; Pial TH; Das S
    J Phys Chem Lett; 2022 Jun; ():5137-5142. PubMed ID: 35657710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated Microphase Separation and Heating-free Distillation-like Behavior of Miscible Binary Liquid Mixtures Using Nanoconfined Grafted Polymer Layers.
    Etha SA; Das S
    J Phys Chem B; 2023 Jul; 127(26):5959-5966. PubMed ID: 37348111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixing of Two Immiscible Liquids within the Polymer Microgel Adsorbed at Their Interface.
    Gumerov RA; Rumyantsev AM; Rudov AA; Pich A; Richtering W; Möller M; Potemkin II
    ACS Macro Lett; 2016 May; 5(5):612-616. PubMed ID: 35632381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of energy dissipation and asymmetric wettability in spontaneous imbibition dynamics in a nanochannel.
    A H; Yang Z; Hu R; Chen YF
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1023-1035. PubMed ID: 34571292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of bulk solution limits for liquid and interfacial transport in nanoconfinements.
    Kelly S; Balhoff MT; Torres-Verdín C
    Langmuir; 2015 Feb; 31(7):2167-79. PubMed ID: 25630047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact range for smooth wall-liquid interactions in nanoconfined liquids.
    Ingebrigtsen TS; Dyre JC
    Soft Matter; 2014 Jun; 10(24):4324-31. PubMed ID: 24791276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Net Unidirectional Fluid Transport in Locally Heated Nanochannel by Thermo-osmosis.
    Wang X; Liu M; Jing D; Mohamad A; Prezhdo O
    Nano Lett; 2020 Dec; 20(12):8965-8971. PubMed ID: 33231457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal and Switchable Omni-Repellency of Liquid-Infused Surfaces for On-Demand Separation of Multiphase Liquid Mixtures.
    Mai VC; Hou S; Pillai PR; Lim TT; Duan H
    ACS Nano; 2021 Apr; 15(4):6977-6986. PubMed ID: 33754693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous interfaces with hydrophobic room-temperature ionic liquids: a molecular dynamics study.
    Chaumont A; Schurhammer R; Wipff G
    J Phys Chem B; 2005 Oct; 109(40):18964-73. PubMed ID: 16853442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relevance of Film Pressures to Interfacial Tension, Miscibility of Liquids, and Lewis Acid-Base Approach.
    Lee LH
    J Colloid Interface Sci; 1999 Jun; 214(1):64-78. PubMed ID: 10328897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time dependence of component temperatures in microwave heated immiscible liquid mixture.
    Kennedy A; Reznik A; Tadesse S; Nunes J
    J Microw Power Electromagn Energy; 2009; 43(2):52-62. PubMed ID: 21384714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding wetting of immiscible liquids near a solid surface using molecular simulation.
    Kumar V; Errington JR
    J Chem Phys; 2013 Aug; 139(6):064110. PubMed ID: 23947846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal and tunable liquid-liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter.
    Li X; Liu J; Qu R; Zhang W; Liu Y; Zhai H; Wei Y; Hu H; Feng L
    Nat Commun; 2021 Jan; 12(1):80. PubMed ID: 33397948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Solid Wall Properties in the Interface Slip of Liquid in Nanochannels.
    Gao W; Zhang X; Han X; Shen C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30558345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation.
    Wang Y; Di J; Wang L; Li X; Wang N; Wang B; Tian Y; Jiang L; Yu J
    Nat Commun; 2017 Sep; 8(1):575. PubMed ID: 28924164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control and applications of immiscible liquids in microchannels.
    Zhao B; Viernes NO; Moore JS; Beebe DJ
    J Am Chem Soc; 2002 May; 124(19):5284-5. PubMed ID: 11996566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex fluidic induced mass transfer across immiscible phases.
    Jellicoe M; Igder A; Chuah C; Jones DB; Luo X; Stubbs KA; Crawley EM; Pye SJ; Joseph N; Vimalananthan K; Gardner Z; Harvey DP; Chen X; Salvemini F; He S; Zhang W; Chalker JM; Quinton JS; Tang Y; Raston CL
    Chem Sci; 2022 Mar; 13(12):3375-3385. PubMed ID: 35432865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air pocket stability and the imbibition pathway in droplet wetting.
    Chang CC; Wu CJ; Sheng YJ; Tsao HK
    Soft Matter; 2015 Oct; 11(37):7308-15. PubMed ID: 26271285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructure Determines the Wettability of Gold Surfaces by Ionic Liquid Ultrathin Films.
    Borghi F; Mirigliano M; Lenardi C; Milani P; Podestà A
    Front Chem; 2021; 9():619432. PubMed ID: 33614601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.