These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35657886)

  • 1. Nonreciprocal Single-Photon Band Structure.
    Tang JS; Nie W; Tang L; Chen M; Su X; Lu Y; Nori F; Xia K
    Phys Rev Lett; 2022 May; 128(20):203602. PubMed ID: 35657886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Squeezing Induced Optical Nonreciprocity.
    Tang L; Tang J; Chen M; Nori F; Xiao M; Xia K
    Phys Rev Lett; 2022 Feb; 128(8):083604. PubMed ID: 35275662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic photon-emitter coupling in chiral photonic circuits.
    Söllner I; Mahmoodian S; Hansen SL; Midolo L; Javadi A; Kiršanskė G; Pregnolato T; El-Ella H; Lee EH; Song JD; Stobbe S; Lodahl P
    Nat Nanotechnol; 2015 Sep; 10(9):775-8. PubMed ID: 26214251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable single-photon nonreciprocal propagation between two waveguides chirally coupled to a quantum emitter.
    Cheng MT; Ma X; Fan JW; Xu J; Zhu C
    Opt Lett; 2017 Aug; 42(15):2914-2917. PubMed ID: 28957206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonreciprocal Transmission and Reflection of a Chirally Coupled Quantum Dot.
    Hurst DL; Price DM; Bentham C; Makhonin MN; Royall B; Clarke E; Kok P; Wilson LR; Skolnick MS; Fox AM
    Nano Lett; 2018 Sep; 18(9):5475-5481. PubMed ID: 30080970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Few-photon optical diode in a chiral waveguide.
    Tan J; Xu X; Lu J; Zhou L
    Opt Express; 2022 Aug; 30(16):28696-28709. PubMed ID: 36299059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact photonic crystal circulator with flat-top transmission band created by cascading magneto-optical resonance cavities.
    Wang Q; Ouyang Z; Lin M; Liu Q
    Appl Opt; 2015 Nov; 54(33):9741-6. PubMed ID: 26836531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonreciprocal microresonators for the miniaturization of optical waveguide isolators.
    Kono N; Kakihara K; Saitoh K; Koshiba M
    Opt Express; 2007 Jun; 15(12):7737-51. PubMed ID: 19547103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs.
    Shayegan KJ; Zhao B; Kim Y; Fan S; Atwater HA
    Sci Adv; 2022 May; 8(18):eabm4308. PubMed ID: 35522747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing broken valley symmetry of quantum emitters in WSe
    Yang L; Yuan Y; Fu B; Yang J; Dai D; Shi S; Yan S; Zhu R; Han X; Li H; Zuo Z; Wang C; Huang Y; Jin K; Gong Q; Xu X
    Nat Commun; 2023 Jul; 14(1):4265. PubMed ID: 37460549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonreciprocal optical-microwave entanglement in a spinning magnetic resonator.
    Ren YL
    Opt Lett; 2022 Mar; 47(5):1125-1128. PubMed ID: 35230307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strongly Correlated States of Light and Repulsive Photons in Chiral Chains of Three-Level Quantum Emitters.
    Iversen OA; Pohl T
    Phys Rev Lett; 2021 Feb; 126(8):083605. PubMed ID: 33709742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete linear optical isolation at the microscale with ultralow loss.
    Kim J; Kim S; Bahl G
    Sci Rep; 2017 May; 7(1):1647. PubMed ID: 28484213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1.54-microm TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss.
    Amemiya T; Shimizu H; Yokoyama M; Hai PN; Tanaka M; Nakano Y
    Appl Opt; 2007 Aug; 46(23):5784-91. PubMed ID: 17694128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing.
    Zhou YR; Zhang QF; Liu FF; Han YH; Gao YP; Fan L; Zhang R; Cao C
    Opt Express; 2024 Jan; 32(2):2786-2803. PubMed ID: 38297799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission.
    Hu H; Chen W; Han X; Wang K; Lu P
    Nanoscale; 2022 Feb; 14(6):2287-2295. PubMed ID: 35081195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonreciprocal Frequency Conversion and Mode Routing in a Microresonator.
    Shen Z; Zhang YL; Chen Y; Xiao YF; Zou CL; Guo GC; Dong CH
    Phys Rev Lett; 2023 Jan; 130(1):013601. PubMed ID: 36669210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical circulation in a multimode optomechanical resonator.
    Ruesink F; Mathew JP; Miri MA; Alù A; Verhagen E
    Nat Commun; 2018 May; 9(1):1798. PubMed ID: 29728562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum optical circulator controlled by a single chirally coupled atom.
    Scheucher M; Hilico A; Will E; Volz J; Rauschenbeutel A
    Science; 2016 Dec; 354(6319):1577-1580. PubMed ID: 27940579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optomechanically-induced nonreciprocal conversion between microwave and optical photons.
    Xing FF; Qin LG; Tian LJ; Wu XY; Huang JH
    Opt Express; 2023 Feb; 31(5):7120-7133. PubMed ID: 36859849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.