These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35657958)

  • 1. Rationally Tuning Phase Separation in Polymeric Membranes toward Optimized All-day Passive Radiative Coolers.
    Cai X; Wang Y; Luo Y; Xu J; Zhao L; Lin Y; Ning Y; Wang J; Gao L; Li D
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35657958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Structure of Polymer Films Optimized by Rationally Tuning Phase Separation for Passive All-Day Radiative Cooling.
    Li L; Liu G; Zhang Q; Zhao H; Shi R; Wang C; Li Z; Zhou B; Zhang Y
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6504-6512. PubMed ID: 38267401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural polymer for highly efficient all-day passive radiative cooling.
    Wang T; Wu Y; Shi L; Hu X; Chen M; Wu L
    Nat Commun; 2021 Jan; 12(1):365. PubMed ID: 33446648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable Colored Subambient Radiative Coolers Based on a Polymer-Tamm Photonic Structure.
    Huang T; Chen Q; Huang J; Lu Y; Xu H; Zhao M; Xu Y; Song W
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16277-16287. PubMed ID: 36930799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing Nanoporous Polymer Films for High-Performance Passive Daytime Radiative Cooling.
    Huang L; Hu Y; Yao X; Chesman ASR; Wang H; Sagoe-Crentsil K; Duan W
    ACS Appl Mater Interfaces; 2024 Oct; 16(40):54401-54411. PubMed ID: 39239925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-sustained and Insulated Radiative/Evaporative Cooler for Daytime Subambient Passive Cooling.
    Yu L; Huang Y; Zhao Y; Rao Z; Li W; Chen Z; Chen M
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6513-6522. PubMed ID: 38273444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel.
    Leroy A; Bhatia B; Kelsall CC; Castillejo-Cuberos A; Di Capua H M; Zhao L; Zhang L; Guzman AM; Wang EN
    Sci Adv; 2019 Oct; 5(10):eaat9480. PubMed ID: 31692957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Mode Porous Polymeric Films with Coral-like Hierarchical Structure for All-Day Radiative Cooling and Heating.
    Shi M; Song Z; Ni J; Du X; Cao Y; Yang Y; Wang W; Wang J
    ACS Nano; 2023 Feb; 17(3):2029-2038. PubMed ID: 36638216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling.
    Liu R; Zhou Z; Mo X; Liu P; Hu B; Duan J; Zhou J
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46972-46979. PubMed ID: 36215717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible composite film with artificial opal photonic crystals for efficient all-day passive radiative cooling.
    Nan F; Zhu YF; Wei HX; Lin Y; Fan B; Zhou L
    Opt Express; 2022 Feb; 30(4):6003-6015. PubMed ID: 35209548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrahigh Passive Cooling Power in Hydrogel with Rationally Designed Optofluidic Properties.
    Fei J; Han D; Zhang X; Li K; Lavielle N; Zhou K; Wang X; Tan JY; Zhong J; Wan MP; Nefzaoui E; Bourouina T; Li S; Ng BF; Cai L; Li H
    Nano Lett; 2024 Jan; 24(2):623-631. PubMed ID: 38048272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Solution-Processed Inorganic Emitter with High Spectral Selectivity for Efficient Subambient Radiative Cooling in Hot Humid Climates.
    Lin C; Li Y; Chi C; Kwon YS; Huang J; Wu Z; Zheng J; Liu G; Tso CY; Chao CYH; Huang B
    Adv Mater; 2022 Mar; 34(12):e2109350. PubMed ID: 35038775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Flexible-strong" polylactic acid porous membrane via tailored polymerization degree of lactic acid side-chains grafting for passive daytime radiative cooler.
    Wang Y; Cheng F; Liu J; Cai W; Ji J; Cai C; Fu Y
    Int J Biol Macromol; 2024 May; 267(Pt 2):131653. PubMed ID: 38631568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic porous designed polymer coatings for high-performance passive all-day radiative cooling.
    Zhu J; An Z; Zhang A; Du Y; Zhou X; Geng Y; Chen G
    iScience; 2022 Apr; 25(4):104126. PubMed ID: 35402873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Change Material Enhanced Radiative Cooler for Temperature-Adaptive Thermal Regulation.
    Yang M; Zhong H; Li T; Wu B; Wang Z; Sun D
    ACS Nano; 2023 Jan; ():. PubMed ID: 36633491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of Manipulative Pore Formation upon Polymeric Coating for the Endowment of the Switchable Property between Passive Daytime Radiative Cooling and Heating.
    Cui P; Yan Y; Wei H; Wu S; Zhong S; Sun W
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):44044-44054. PubMed ID: 39122692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Linked Porous Polymeric Coating without a Metal-Reflective Layer for Sub-Ambient Radiative Cooling.
    Son S; Liu Y; Chae D; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57832-57839. PubMed ID: 33345542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Passive Daytime Radiative Cooling by Hierarchically Designed Films Integrating Robust Durability.
    Zhang L; Zhan H; Xia Y; Zhang R; Xue J; Yong J; Zhao L; Liu Y; Feng S
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31994-32001. PubMed ID: 37347225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling.
    Zhou K; Li W; Patel BB; Tao R; Chang Y; Fan S; Diao Y; Cai L
    Nano Lett; 2021 Feb; 21(3):1493-1499. PubMed ID: 33464912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.