These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35658180)

  • 1. α-Amino Acid-Based Poly(Ester urea)s as Multishape Memory Polymers for Biomedical Applications.
    Peterson GI; Dobrynin AV; Becker ML
    ACS Macro Lett; 2016 Oct; 5(10):1176-1179. PubMed ID: 35658180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hygroscopic Tunable Multishape Memory Effect in Cellulosic Macromolecular Networks with a Supramolecular Mesophase.
    Du B; Wang X; Xia Y; Wu Y; Wu B; Huang S
    ACS Macro Lett; 2023 Jul; 12(7):835-840. PubMed ID: 37294873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.
    Li X; Pan Y; Zheng Z; Ding X
    Macromol Rapid Commun; 2018 Mar; 39(6):e1700613. PubMed ID: 29292554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.
    Cha KJ; Lih E; Choi J; Joung YK; Ahn DJ; Han DK
    Macromol Biosci; 2014 May; 14(5):667-78. PubMed ID: 24446274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable shape memory properties of highly stretchable poly(ester urea) random copolymers based on α-amino acids.
    Wu F; Zhang W; Du Y; Cheng F; Li H
    Soft Matter; 2022 Oct; 18(41):7959-7967. PubMed ID: 36214048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influences of Crystallinity and Crosslinking Density on the Shape Recovery Force in Poly(ε-Caprolactone)-Based Shape-Memory Polymer Blends.
    Fulati A; Uto K; Ebara M
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds.
    Wang Y; Pan Y; Zheng Z; Ding X
    Macromol Rapid Commun; 2018 May; 39(10):e1800128. PubMed ID: 29675918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the Shape Memory Properties of Segmented Poly(ester urethanes) via Blending.
    Shirole A; Perotto CU; Balog S; Weder C
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24829-24839. PubMed ID: 29972638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-IPNs with Moisture-Triggered Shape Memory and Self-Healing Properties.
    Jiang ZC; Xiao YY; Kang Y; Li BJ; Zhang S
    Macromol Rapid Commun; 2017 Jul; 38(14):. PubMed ID: 28544461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally and Electrically Triggered Triple-Shape Memory Behavior of Poly(vinyl acetate)/Poly(lactic acid) Due to Graphene-Induced Phase Separation.
    Sabzi M; Babaahmadi M; Rahnama M
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24061-24070. PubMed ID: 28640585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile Strategy to Fabricate Multishape Memory Polymers with Controllable Mechanical Properties.
    Zhang Q; Hua W; Feng J
    Macromol Rapid Commun; 2016 Aug; 37(15):1262-7. PubMed ID: 27254383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompound-Based Multiple Shape Memory Polymers Reinforced by Photo-Cross-Linking.
    Wang K; Jia YG; Zhu XX
    ACS Biomater Sci Eng; 2015 Sep; 1(9):855-863. PubMed ID: 33434964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive Manufacturing of α-Amino Acid Based Poly(ester amide)s for Biomedical Applications.
    Ansari V; Calore A; Zonderland J; Harings JAW; Moroni L; Bernaerts KV
    Biomacromolecules; 2022 Mar; 23(3):1083-1100. PubMed ID: 35050596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailored poly(ethylene) glycol dimethacrylate based shape memory polymer for orthopedic applications.
    Antony GJM; Jarali CS; Aruna ST; Raja S
    J Mech Behav Biomed Mater; 2017 Jan; 65():857-865. PubMed ID: 27810732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reprocessable and Multiple Shape Memory Thermosets with Reconfigurability.
    Wang Y; Pan Y; Zheng Z; Ding X
    Macromol Rapid Commun; 2019 Jun; 40(11):e1900001. PubMed ID: 30892776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell nano-latex blending method to prepare multi-shape memory polymers.
    Li H; Luo Y; Gao X
    Soft Matter; 2017 Aug; 13(31):5324-5331. PubMed ID: 28695221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidirectional Triple-Shape-Memory Polymer by Tunable Cross-linking and Crystallization.
    Tian M; Gao W; Hu J; Xu X; Ning N; Yu B; Zhang L
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6426-6435. PubMed ID: 31940167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications.
    Guo B; Chen Y; Lei Y; Zhang L; Zhou WY; Rabie AB; Zhao J
    Biomacromolecules; 2011 Apr; 12(4):1312-21. PubMed ID: 21381645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-Based Triple Shape Memory Polymers.
    Sivasankarapillai G; Li H; McDonald AG
    Biomacromolecules; 2015 Sep; 16(9):2735-42. PubMed ID: 26214041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding.
    Ware T; Hearon K; Lonnecker A; Wooley KL; Maitland DJ; Voit W
    Macromolecules; 2012 Jan; 45(2):1062-1069. PubMed ID: 22287811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.