These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35658679)

  • 21. Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review.
    Barbruni GL; Ros PM; Demarchi D; Carrara S; Ghezzi D
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1160-1178. PubMed ID: 33201828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A low-frequency versatile wireless power transfer technology for biomedical implants.
    Jiang H; Zhang J; Lan D; Chao ; Liou S; Shahnasser H; Fechter R; Hirose S; Harrison M; Roy S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):526-35. PubMed ID: 23893211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wireless Technologies for Implantable Devices.
    Nelson BD; Karipott SS; Wang Y; Ong KG
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Power Approaches for Implantable Medical Devices.
    Ben Amar A; Kouki AB; Cao H
    Sensors (Basel); 2015 Nov; 15(11):28889-914. PubMed ID: 26580626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Building wireless implantable neural interfaces within weeks for neuroscientists.
    Bentler C; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1078-1081. PubMed ID: 29060061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wireless gigabit data telemetry for large-scale neural recording.
    Kuan YC; Lo YK; Kim Y; Chang MC; Liu W
    IEEE J Biomed Health Inform; 2015 May; 19(3):949-57. PubMed ID: 25823050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates.
    Borton DA; Yin M; Aceros J; Nurmikko A
    J Neural Eng; 2013 Apr; 10(2):026010. PubMed ID: 23428937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implications for a Wireless, External Device System to Study Electrocorticography.
    Rotermund D; Pistor J; Hoeffmann J; Schellenberg T; Boll D; Tolstosheeva E; Gauck D; Stemmann H; Peters-Drolshagen D; Kreiter AK; Schneider M; Paul S; Lang W; Pawelzik KR
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28375161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model validation of untethered, ultrasonic neural dust motes for cortical recording.
    Seo D; Carmena JM; Rabaey JM; Maharbiz MM; Alon E
    J Neurosci Methods; 2015 Apr; 244():114-22. PubMed ID: 25109901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetoelectric (ME) Antenna for On-chip Implantable Energy Harvesting.
    Nasrollahpour M; Zaeimbashi M; Khalifa A; Liang X; Chen H; Sun N; Abrishami SMS; Martos-Repath I; Emam S; Cash S; Sun NX
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6167-6170. PubMed ID: 34892524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in neural dust: towards a neural interface platform.
    Neely RM; Piech DK; Santacruz SR; Maharbiz MM; Carmena JM
    Curr Opin Neurobiol; 2018 Jun; 50():64-71. PubMed ID: 29331738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wireless networks of injectable microelectronic stimulators based on rectification of volume conducted high frequency currents.
    García-Moreno A; Comerma-Montells A; Tudela-Pi M; Minguillon J; Becerra-Fajardo L; Ivorra A
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041421
    [No Abstract]   [Full Text] [Related]  

  • 36. Future of Neural Interfaces.
    Laiwalla F; Nurmikko A
    Adv Exp Med Biol; 2019; 1101():225-241. PubMed ID: 31729678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Batteryless, Miniaturized Implantable Glucose Sensor Using a Fluorescent Hydrogel.
    Lee H; Lee J; Park H; Nam MS; Heo YJ; Kim S
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals.
    Ausra J; Wu M; Zhang X; Vázquez-Guardado A; Skelton P; Peralta R; Avila R; Murickan T; Haney CR; Huang Y; Rogers JA; Kozorovitskiy Y; Gutruf P
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.
    Ng KA; Greenwald E; Xu YP; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):45-62. PubMed ID: 26798055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.