BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35658716)

  • 1. Maladaptation of renal hemodynamics contributes to kidney dysfunction resulting from thoracic spinal cord injury in mice.
    Osei-Owusu P; Collyer E; Dahlen SA; Adams RE; Tom VJ
    Am J Physiol Renal Physiol; 2022 Aug; 323(2):F120-F140. PubMed ID: 35658716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A porcine model for studying the cardiovascular consequences of high-thoracic spinal cord injury.
    West CR; Poormasjedi-Meibod MS; Manouchehri N; Williams AM; Erskine EL; Webster M; Fisk S; Morrison C; Short K; So K; Cheung A; Streijger F; Kwon BK
    J Physiol; 2020 Mar; 598(5):929-942. PubMed ID: 31876952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental high thoracic spinal cord injury impairs the cardiac and cerebrovascular response to orthostatic challenge in rats.
    Hayes BD; Fossey MPM; Poormasjedi-Meibod MS; Erskine E; Soriano JE; Scott B; Rosentreter R; Granville DJ; Phillips AA; West CR
    Am J Physiol Heart Circ Physiol; 2021 Oct; 321(4):H716-H727. PubMed ID: 34448635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute changes in systemic hemodynamics and serum vasopressin after complete cervical spinal cord injury in piglets.
    Zahra M; Samdani A; Piggott K; Gonzalez-Brito M; Solano J; De Los Santo R; Buitrago JC; Alam F; He D; Gaughan JP; Betz R; Dietrich D; Kuluz J
    Neurocrit Care; 2010 Aug; 13(1):132-40. PubMed ID: 20458554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular dysfunctions following spinal cord injury.
    Popa C; Popa F; Grigorean VT; Onose G; Sandu AM; Popescu M; Burnei G; Strambu V; Sinescu C
    J Med Life; 2010; 3(3):275-85. PubMed ID: 20945818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct roles of angiotensin receptors in autonomic dysreflexia following high-level spinal cord injury in mice.
    Järve A; Todiras M; Lian X; Filippelli-Silva R; Qadri F; Martin RP; Gollasch M; Bader M
    Exp Neurol; 2019 Jan; 311():173-181. PubMed ID: 30315807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic spinal cord injury attenuates influenza virus-specific antiviral immunity.
    Bracchi-Ricard V; Zha J; Smith A; Lopez-Rodriguez DM; Bethea JR; Andreansky S
    J Neuroinflammation; 2016 May; 13(1):125. PubMed ID: 27245318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic microcirculation dysfunction after low thoracic spinal cord injury in mice.
    Yuan X; Wu Q; Tang Y; Jing Y; Li Z; Xiu R
    Life Sci; 2019 Mar; 221():47-55. PubMed ID: 30738044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct comparison of cervical and high thoracic spinal cord injury reveals distinct autonomic and cardiovascular consequences.
    Lujan HL; DiCarlo SE
    J Appl Physiol (1985); 2020 Mar; 128(3):554-564. PubMed ID: 31999525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival Model of Thoracic Contusion Spinal Cord Injury in the Domestic Pig.
    Gayen CD; Bessen MA; Dorrian RM; Quarrington RD; Mulaibrahimovic A; Doig RLO; Freeman BJC; Leonard AV; Jones CF
    J Neurotrauma; 2023 May; 40(9-10):965-980. PubMed ID: 36200622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of calcium channel alpha-2-delta-1 subunit in dorsal horn contributes to spinal cord injury-induced tactile allodynia.
    Kusuyama K; Tachibana T; Yamanaka H; Okubo M; Yoshiya S; Noguchi K
    Spine J; 2018 Jun; 18(6):1062-1069. PubMed ID: 29355786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin-(1-7) Receptor Mas in Hemodynamic and Thermoregulatory Dysfunction After High-Level Spinal Cord Injury in Mice: A Pilot Study.
    Järve A; Todiras M; Kny M; Fischer FI; Kraemer JF; Wessel N; Plehm R; Fielitz J; Alenina N; Bader M
    Front Physiol; 2018; 9():1930. PubMed ID: 30687131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Duraplasty in Traumatic Thoracic Spinal Cord Injury: Impact on Spinal Cord Hemodynamics, Tissue Metabolism, Histology, and Behavioral Recovery Using a Porcine Model.
    Streijger F; Kim KT; So K; Manouchehri N; Shortt K; Okon EB; Morrison C; Fong A; Gupta R; Allard Brown A; Tigchelaar S; Sun J; Liu E; Keung M; Daly CD; Cripton PA; Sekhon MS; Griesdale DE; Kwon BK
    J Neurotrauma; 2021 Nov; 38(21):2937-2955. PubMed ID: 34011164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote inflammatory response in liver is dependent on the segmental level of spinal cord injury.
    Fleming JC; Bailey CS; Hundt H; Gurr KR; Bailey SI; Cepinskas G; Lawendy AR; Badhwar A
    J Trauma Acute Care Surg; 2012 May; 72(5):1194-201;discussion 1202. PubMed ID: 22673245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic microcirculation after complete high and low thoracic spinal cord section in rats.
    Guízar-Sahagún G; Velasco-Hernández L; Martínez-Cruz A; Castañeda-Hernández G; Bravo G; Rojas G; Hong E
    J Neurotrauma; 2004 Nov; 21(11):1614-23. PubMed ID: 15684653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic thoracic spinal cord injury impairs CD8+ T-cell function by up-regulating programmed cell death-1 expression.
    Zha J; Smith A; Andreansky S; Bracchi-Ricard V; Bethea JR
    J Neuroinflammation; 2014 Apr; 11():65. PubMed ID: 24690491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Changes in Cervical Spinal Cord Microvasculature During the Chronic Phase of Hemicontusion Spinal Cord Injury in Rats.
    Liu Y; Liu Q; Li R; Yang Z; Huang Z; Huang Z; Liu J; Wu X; Lin J; Wu X; Zhu Q
    World Neurosurg; 2019 Jun; 126():e385-e391. PubMed ID: 30822573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic hypothermia effectively reduces elevated extracellular ascorbate concentrations caused by acute spinal cord injury.
    Zhang Y; Lv Y; Ji W; Zhou R; Gao S; Zhou F
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):22-29. PubMed ID: 30526134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in Pressure, Hemodynamics, and Metabolism within the Spinal Cord during the First 7 Days after Injury Using a Porcine Model.
    Streijger F; So K; Manouchehri N; Tigchelaar S; Lee JHT; Okon EB; Shortt K; Kim SE; McInnes K; Cripton P; Kwon BK
    J Neurotrauma; 2017 Dec; 34(24):3336-3350. PubMed ID: 28844181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Optical Monitoring of Spinal Cord Oxygenation and Hemodynamics during the First Seven Days Post-Injury in a Porcine Model of Acute Spinal Cord Injury.
    Cheung A; Tu L; Manouchehri N; Kim KT; So K; Webster M; Fisk S; Tigchelaar S; Dalkilic SS; Sayre EC; Streijger F; Macnab A; Kwon BK; Shadgan B
    J Neurotrauma; 2020 Nov; 37(21):2292-2301. PubMed ID: 32689879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.