These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35658813)

  • 1. Intra-cycle analysis of muscle vibration during cycling.
    Trama R; Hautier C; Blache Y; Bertucci W; Chiementin X; Hintzy F
    Sports Biomech; 2023 Apr; 22(4):554-566. PubMed ID: 35658813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Thigh-Compression Shorts on Muscle Activity and Soft-Tissue Vibration During Cycling.
    Hintzy F; Gregoire N; Samozino P; Chiementin X; Bertucci W; Rossi J
    J Strength Cond Res; 2019 Aug; 33(8):2145-2152. PubMed ID: 31344011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.
    Munera M; Bertucci W; Duc S; Chiementin X
    J Sports Sci; 2018 Jul; 36(13):1465-1475. PubMed ID: 29099665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle coordination while pulling up during cycling.
    Mornieux G; Gollhofer A; Stapelfeldt B
    Int J Sports Med; 2010 Dec; 31(12):843-6. PubMed ID: 20827654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of crank power and cadence on muscle fascicle shortening velocity, muscle activation and joint-specific power during cycling.
    Riveros-Matthey CD; Carroll TJ; Lichtwark GA; Connick MJ
    J Exp Biol; 2023 Jul; 226(13):. PubMed ID: 37326292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Cadence on the Mechanics and Energetics of Constant Power Cycling.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    Med Sci Sports Exerc; 2019 May; 51(5):941-950. PubMed ID: 30531486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On voluntary rhythmic leg movement behaviour and control during pedalling.
    Hansen EA
    Acta Physiol (Oxf); 2015 Jun; 214 Suppl 702():1-18. PubMed ID: 26094819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gastrocnemius medialis and vastus lateralis oxygenation during whole-body vibration exercise.
    Cardinale M; Ferrari M; Quaresima V
    Med Sci Sports Exerc; 2007 Apr; 39(4):694-700. PubMed ID: 17414808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of Q factor on gross mechanical efficiency and muscular activation in cycling.
    Disley BX; Li FX
    Scand J Med Sci Sports; 2014 Feb; 24(1):117-21. PubMed ID: 22612455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromuscular, metabolic, and kinetic adaptations for skilled pedaling performance in cyclists.
    Takaishi T; Yamamoto T; Ono T; Ito T; Moritani T
    Med Sci Sports Exerc; 1998 Mar; 30(3):442-9. PubMed ID: 9526892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Cycling-specific Vibration on Neuromuscular Performance.
    Viellehner J; Potthast W
    Med Sci Sports Exerc; 2021 May; 53(5):936-944. PubMed ID: 33196607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cycling experience and pedal cadence on the near-infrared spectroscopy parameters.
    Takaishi T; Ishida K; Katayama K; Yamazaki K; Yamamoto T; Moritani T
    Med Sci Sports Exerc; 2002 Dec; 34(12):2062-71. PubMed ID: 12471317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freely chosen cadence during ergometer cycling is dependent on pedalling history.
    Hansen EA; Nøddelund E; Nielsen FS; Sørensen MP; Nielsen MØ; Johansen M; Andersen MH; Nielsen MD
    Eur J Appl Physiol; 2021 Nov; 121(11):3041-3049. PubMed ID: 34286367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of muscle-tendon unit vs. fascicle analyses on vastus lateralis force-generating capacity during constant power output cycling with variable cadence.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    J Appl Physiol (1985); 2018 Apr; 124(4):993-1002. PubMed ID: 29357487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle activity and pedal force profile of triathletes during cycling to exhaustion.
    Diefenthaeler F; Coyle EF; Bini RR; Carpes FP; Vaz MA
    Sports Biomech; 2012 Mar; 11(1):10-9. PubMed ID: 22518941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors contributing to lower metabolic demand of eccentric compared with concentric cycling.
    Peñailillo L; Blazevich AJ; Nosaka K
    J Appl Physiol (1985); 2017 Oct; 123(4):884-893. PubMed ID: 28663378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quadriceps femoris motor pattern for efficient cycling.
    Hering GO; Bertschinger R; Stepan J
    PLoS One; 2023; 18(3):e0282391. PubMed ID: 36928839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing relative crank angle increases the metabolic cost of leg cycling.
    Straw AH; Hoogkamer W; Kram R
    Eur J Appl Physiol; 2017 Oct; 117(10):2021-2027. PubMed ID: 28785797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscular activity patterns in 1-legged vs. 2-legged pedaling.
    Park S; Caldwell GE
    J Sport Health Sci; 2021 Jan; 10(1):99-106. PubMed ID: 33518019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.