These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35658930)

  • 21. Numerical investigation of fractional-fractal Boussinesq equation.
    Yadav MP; Agarwal R
    Chaos; 2019 Jan; 29(1):013109. PubMed ID: 30709111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations.
    Li X; Yang X
    J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions.
    Lu B; Holst MJ; McCammon JA; Zhou YC
    J Comput Phys; 2010 Sep; 229(19):6979-6994. PubMed ID: 21709855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ANALYSIS AND DESIGN OF JUMP COEFFICIENTS IN DISCRETE STOCHASTIC DIFFUSION MODELS.
    Meinecke L; Engblom S; Hellander A; Lötstedt P
    SIAM J Sci Comput; 2016; 38(1):A55-A83. PubMed ID: 28611531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate numerical scheme for singularly perturbed parabolic delay differential equation.
    Woldaregay MM; Duressa GF
    BMC Res Notes; 2021 Sep; 14(1):358. PubMed ID: 34526134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radial basis function-generated finite difference scheme for simulating the brain cancer growth model under radiotherapy in various types of computational domains.
    Dehghan M; Narimani N
    Comput Methods Programs Biomed; 2020 Oct; 195():105641. PubMed ID: 32726719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Numerical Method for Solving Elasticity Equations with Interfaces.
    Hou S; Li Z; Wang L; Wang W
    Commun Comput Phys; 2012; 12(2):595-612. PubMed ID: 22707984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radial Basis Function Finite Difference Method Based on Oseen Iteration for Solving Two-Dimensional Navier-Stokes Equations.
    Mu L; Feng X
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography: part I.
    Guven M; Reilly-Raska L; Zhou L; Yazici B
    IEEE Trans Med Imaging; 2010 Feb; 29(2):217-29. PubMed ID: 20129842
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.
    Huang CH; Lin CC; Ju MS
    Comput Biol Med; 2015 Feb; 57():150-8. PubMed ID: 25557200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mixed finite element discretisation of linear and nonlinear multivariate splines using the Laplacian penalty based on biorthogonal systems.
    Lamichhane BP
    MethodsX; 2023; 10():101962. PubMed ID: 36578293
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite element based Green's function integral equation for modelling light scattering.
    Li W; Tan D; Xu J; Wang S; Chen Y
    Opt Express; 2019 May; 27(11):16047-16057. PubMed ID: 31163791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
    An N; Yu X; Chen H; Huang C; Liu Z
    J Inequal Appl; 2017; 2017(1):186. PubMed ID: 28855785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Orthogonal cubic splines for the numerical solution of nonlinear parabolic partial differential equations.
    Alavi J; Aminikhah H
    MethodsX; 2023; 10():102190. PubMed ID: 37168771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methods and framework for visualizing higher-order finite elements.
    Schroeder WJ; Bertel F; Malaterre M; Thompson D; Pébay PP; O'Bara R; Tendulkar S
    IEEE Trans Vis Comput Graph; 2006; 12(4):446-60. PubMed ID: 16805255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Tensor B-Spline Approach for Solving the Diffusion PDE With Application to Optical Diffusion Tomography.
    Shulga D; Morozov O; Hunziker P
    IEEE Trans Med Imaging; 2017 Apr; 36(4):972-982. PubMed ID: 28029620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite element discretization of non-linear diffusion equations with thermal fluctuations.
    de la Torre JA; Español P; Donev A
    J Chem Phys; 2015 Mar; 142(9):094115. PubMed ID: 25747069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of Finite Difference Discretization Schemes for Diffusion in Spheres with Variable Diffusivity.
    Versypt AN; Braatz RD
    Comput Chem Eng; 2014 Dec; 71():241-252. PubMed ID: 25642003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical Convergence Analysis of the Frank-Kamenetskii Equation.
    Woolway M; Jacobs BA; Momoniat E; Harley C; Britz D
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations.
    Jha N; Perfilieva I; Kritika
    MethodsX; 2023; 10():102206. PubMed ID: 37206645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.