These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35658997)

  • 1. Experimental data manipulations to assess performance of hyperspectral classification models of crop seeds and other objects.
    Nansen C; Imtiaz MS; Mesgaran MB; Lee H
    Plant Methods; 2022 Jun; 18(1):74. PubMed ID: 35658997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using hyperspectral imaging to determine germination of native Australian plant seeds.
    Nansen C; Zhao G; Dakin N; Zhao C; Turner SR
    J Photochem Photobiol B; 2015 Apr; 145():19-24. PubMed ID: 25752861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of hyperspectral imaging and chemometrics for variety classification of maize seeds.
    Zhao Y; Zhu S; Zhang C; Feng X; Feng L; He Y
    RSC Adv; 2018 Jan; 8(3):1337-1345. PubMed ID: 35540920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variety classification of coated maize seeds based on Raman hyperspectral imaging.
    Liu Q; Wang Z; Long Y; Zhang C; Fan S; Huang W
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120772. PubMed ID: 34973616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Variety recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning].
    Cheng SX; Kong WW; Zhang C; Liu F; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2519-22. PubMed ID: 25532356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Reliable Methodology for Determining Seed Viability by Using Hyperspectral Data from Two Sides of Wheat Seeds.
    Zhang T; Wei W; Zhao B; Wang R; Li M; Yang L; Wang J; Sun Q
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29517991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds.
    Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117973. PubMed ID: 31887678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Classification Method for Seed Viability Assessment with Infrared Thermography.
    Men S; Yan L; Liu J; Qian H; Luo Q
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28417907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral remote sensing to detect leafminer-induced stress in bok choy and spinach according to fertilizer regime and timing.
    Nguyen HD; Nansen C
    Pest Manag Sci; 2020 Jun; 76(6):2208-2216. PubMed ID: 31970888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral prediction of sugarbeet seed germination based on gauss kernel SVM.
    Yang J; Sun L; Xing W; Feng G; Bai H; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119585. PubMed ID: 33662700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging.
    Medeiros AD; Silva LJD; Ribeiro JPO; Ferreira KC; Rosas JTF; Santos AA; Silva CBD
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32756355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms.
    Wei Y; Li X; Pan X; Li L
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of spatial and spectral data reduction in the detection of internal defects in food products.
    Zhang X; Nansen C; Aryamanesh N; Yan G; Boussaid F
    Appl Spectrosc; 2015 Apr; 69(4):473-80. PubMed ID: 25742260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating optical imaging techniques for a novel approach to evaluate Siberian wild rye seed maturity.
    Jia Z; Ou C; Sun S; Wang J; Liu J; Sun M; Ma W; Li M; Jia S; Mao P
    Front Plant Sci; 2023; 14():1170947. PubMed ID: 37152128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of computer vision and multispectral imaging techniques for classification of cowpea (
    ElMasry G; Mandour N; Wagner MH; Demilly D; Verdier J; Belin E; Rousseau D
    Plant Methods; 2019; 15():24. PubMed ID: 30911323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of multi-year and multi-variety pumpkin seeds using hyperspectral imaging technology and three-dimensional convolutional neural network.
    Li X; Feng X; Fang H; Yang N; Yang G; Yu Z; Shen J; Geng W; He Y
    Plant Methods; 2023 Aug; 19(1):82. PubMed ID: 37563698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calibration to maximize temporal radiometric repeatability of airborne hyperspectral imaging data.
    Nansen C; Lee H; Mantri A
    Front Plant Sci; 2023; 14():1051410. PubMed ID: 36860905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of near-infrared hyperspectral imaging to identify a variety of silage maize seeds and common maize seeds.
    Bai X; Zhang C; Xiao Q; He Y; Bao Y
    RSC Adv; 2020 Mar; 10(20):11707-11715. PubMed ID: 35496579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.