These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Proteomic pattern-based analyses of light responses in Arabidopsis thaliana wild-type and photoreceptor mutants. Kim DS; Cho DS; Park WM; Na HJ; Nam HG Proteomics; 2006 May; 6(10):3040-9. PubMed ID: 16619305 [TBL] [Abstract][Full Text] [Related]
3. Proteomic analysis of temperature stress-responsive proteins in Arabidopsis thaliana rosette leaves. Rocco M; Arena S; Renzone G; Scippa GS; Lomaglio T; Verrillo F; Scaloni A; Marra M Mol Biosyst; 2013 Jun; 9(6):1257-67. PubMed ID: 23624559 [TBL] [Abstract][Full Text] [Related]
4. Diurnal dynamics of the Arabidopsis rosette proteome and phosphoproteome. Uhrig RG; Echevarría-Zomeño S; Schlapfer P; Grossmann J; Roschitzki B; Koerber N; Fiorani F; Gruissem W Plant Cell Environ; 2021 Mar; 44(3):821-841. PubMed ID: 33278033 [TBL] [Abstract][Full Text] [Related]
5. pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana. Baerenfaller K; Hirsch-Hoffmann M; Svozil J; Hull R; Russenberger D; Bischof S; Lu Q; Gruissem W; Baginsky S Integr Biol (Camb); 2011 Mar; 3(3):225-37. PubMed ID: 21264403 [TBL] [Abstract][Full Text] [Related]
6. Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Vera-Estrella R; Barkla BJ; Pantoja O J Proteomics; 2014 Dec; 111():113-27. PubMed ID: 24892798 [TBL] [Abstract][Full Text] [Related]
7. A comprehensive differential proteomic study of nitrate deprivation in Arabidopsis reveals complex regulatory networks of plant nitrogen responses. Wang X; Bian Y; Cheng K; Zou H; Sun SS; He JX J Proteome Res; 2012 Apr; 11(4):2301-15. PubMed ID: 22329444 [TBL] [Abstract][Full Text] [Related]
8. Proteome Analysis of Arabidopsis Roots. Nikonorova N; Vu LD; Stes E; Gevaert K; De Smet I Methods Mol Biol; 2018; 1761():263-274. PubMed ID: 29525964 [TBL] [Abstract][Full Text] [Related]
9. Roles of proteome dynamics and cytokinin signaling in root to hypocotyl ratio changes induced by shading roots of Arabidopsis seedlings. Novák J; Černý M; Pavlů J; Zemánková J; Skalák J; Plačková L; Brzobohatý B Plant Cell Physiol; 2015 May; 56(5):1006-18. PubMed ID: 25700275 [TBL] [Abstract][Full Text] [Related]
10. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Mair A; Xu SL; Branon TC; Ting AY; Bergmann DC Elife; 2019 Sep; 8():. PubMed ID: 31535972 [TBL] [Abstract][Full Text] [Related]
11. Comparative Proteomics Analysis of Phloem Exudates Collected during the Induction of Systemic Acquired Resistance. Carella P; Merl-Pham J; Wilson DC; Dey S; Hauck SM; Vlot AC; Cameron RK Plant Physiol; 2016 Jun; 171(2):1495-510. PubMed ID: 27208255 [TBL] [Abstract][Full Text] [Related]
12. Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity. Bassal M; Abukhalaf M; Majovsky P; Thieme D; Herr T; Ayash M; Tabassum N; Al Shweiki MR; Proksch C; Hmedat A; Ziegler J; Lee J; Neumann S; Hoehenwarter W Mol Plant; 2020 Dec; 13(12):1709-1732. PubMed ID: 33007468 [TBL] [Abstract][Full Text] [Related]
13. Proteomic analysis of grapevine (Vitis vinifera L.) leaf changes induced by transition to autotrophy and exposure to high light irradiance. Nilo-Poyanco R; Olivares D; Orellana A; Hinrichsen P; Pinto M J Proteomics; 2013 Oct; 91():309-30. PubMed ID: 23933133 [TBL] [Abstract][Full Text] [Related]
14. Metabolism of the anthelmintic drug fenbendazole in Arabidopsis thaliana and its effect on transcriptome and proteome. Syslová E; Landa P; Stuchlíková LR; Matoušková P; Skálová L; Szotáková B; Navrátilová M; Vaněk T; Podlipná R Chemosphere; 2019 Mar; 218():662-669. PubMed ID: 30502705 [TBL] [Abstract][Full Text] [Related]
15. Proteome-wide Analysis of Protein Thermal Stability in the Model Higher Plant Volkening JD; Stecker KE; Sussman MR Mol Cell Proteomics; 2019 Feb; 18(2):308-319. PubMed ID: 30401684 [TBL] [Abstract][Full Text] [Related]
16. Effect of Amber (595 nm) Light Supplemented with Narrow Blue (430 nm) Light on Tomato Biomass. Wu BS; Mansoori M; Trumpler K; Addo PW; MacPherson S; Lefsrud M Plants (Basel); 2023 Jun; 12(13):. PubMed ID: 37447018 [TBL] [Abstract][Full Text] [Related]
17. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective. Johnová P; Skalák J; Saiz-Fernández I; Brzobohatý B Biochim Biophys Acta; 2016 Aug; 1864(8):916-31. PubMed ID: 26861773 [TBL] [Abstract][Full Text] [Related]
18. Proteome coverage of the model plant Arabidopsis thaliana: implications for shotgun proteomic studies. Mann GW; Joshi HJ; Petzold CJ; Heazlewood JL J Proteomics; 2013 Feb; 79():195-9. PubMed ID: 23268116 [TBL] [Abstract][Full Text] [Related]
19. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. Kraner ME; Müller C; Sonnewald U Plant J; 2017 Nov; 92(4):696-709. PubMed ID: 28865150 [TBL] [Abstract][Full Text] [Related]
20. Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant's adaptation to environment. Tolin S; Arrigoni G; Trentin AR; Veljovic-Jovanovic S; Pivato M; Zechman B; Masi A Proteomics; 2013 Jun; 13(12-13):2031-45. PubMed ID: 23661340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]