These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35659862)

  • 1. A scaling law in CRISPR repertoire sizes arises from the avoidance of autoimmunity.
    Chen H; Mayer A; Balasubramanian V
    Curr Biol; 2022 Jul; 32(13):2897-2907.e5. PubMed ID: 35659862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imprecise Spacer Acquisition Generates CRISPR-Cas Immune Diversity through Primed Adaptation.
    Jackson SA; Birkholz N; Malone LM; Fineran PC
    Cell Host Microbe; 2019 Feb; 25(2):250-260.e4. PubMed ID: 30661951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.
    Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viral diversity threshold for adaptive immunity in prokaryotes.
    Weinberger AD; Wolf YI; Lobkovsky AE; Gilmore MS; Koonin EV
    mBio; 2012 Dec; 3(6):e00456-12. PubMed ID: 23221803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-targeting spacers in CRISPR-array: Accidental occurrence or evolutionarily conserved phenomenon.
    Devi V; Harjai K; Chhibber S
    J Basic Microbiol; 2022 Jan; 62(1):4-12. PubMed ID: 34904260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
    Maniv I; Jiang W; Bikard D; Marraffini LA
    J Bacteriol; 2016 Jan; 198(6):941-50. PubMed ID: 26755632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange.
    Lopatina A; Medvedeva S; Artamonova D; Kolesnik M; Sitnik V; Ispolatov Y; Severinov K
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180092. PubMed ID: 30905291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coevolution between bacterial CRISPR-Cas systems and their bacteriophages.
    Watson BNJ; Steens JA; Staals RHJ; Westra ER; van Houte S
    Cell Host Microbe; 2021 May; 29(5):715-725. PubMed ID: 33984274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The diversity-generating benefits of a prokaryotic adaptive immune system.
    van Houte S; Ekroth AK; Broniewski JM; Chabas H; Ashby B; Bondy-Denomy J; Gandon S; Boots M; Paterson S; Buckling A; Westra ER
    Nature; 2016 Apr; 532(7599):385-8. PubMed ID: 27074511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the Relationship between CRISPR-Cas Content and Growth Rate in Bacteria.
    Liu ZL; Hu EZ; Niu DK
    Microbiol Spectr; 2023 Jun; 11(3):e0340922. PubMed ID: 37022199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The size of the immune repertoire of bacteria.
    Bradde S; Nourmohammad A; Goyal S; Balasubramanian V
    Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5144-5151. PubMed ID: 32071241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems.
    Nicholson TJ; Jackson SA; Croft BI; Staals RHJ; Fineran PC; Brown CM
    RNA Biol; 2019 Apr; 16(4):566-576. PubMed ID: 30157725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between mobile genetic elements drives optimization of a phage-encoded CRISPR-Cas system: insights from a natural arms race.
    McKitterick AC; LeGault KN; Angermeyer A; Alam M; Seed KD
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180089. PubMed ID: 30905288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A target expression threshold dictates invader defense and prevents autoimmunity by CRISPR-Cas13.
    Vialetto E; Yu Y; Collins SP; Wandera KG; Barquist L; Beisel CL
    Cell Host Microbe; 2022 Aug; 30(8):1151-1162.e6. PubMed ID: 35690065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prokaryote autoimmunity in the context of self-targeting by CRISPR-Cas systems.
    Lenskaia T; Boley D
    J Bioinform Comput Biol; 2020 Oct; 18(5):2050033. PubMed ID: 33078994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of CRISPR/Cas system in Clostridium perfringens.
    Long J; Xu Y; Ou L; Yang H; Xi Y; Chen S; Duan G
    Mol Genet Genomics; 2019 Oct; 294(5):1263-1275. PubMed ID: 31134321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting against Phages in a Human Virome Catalog.
    Soto-Perez P; Bisanz JE; Berry JD; Lam KN; Bondy-Denomy J; Turnbaugh PJ
    Cell Host Microbe; 2019 Sep; 26(3):325-335.e5. PubMed ID: 31492655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape.
    Pyenson NC; Gayvert K; Varble A; Elemento O; Marraffini LA
    Cell Host Microbe; 2017 Sep; 22(3):343-353.e3. PubMed ID: 28826839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context.
    Iranzo J; Lobkovsky AE; Wolf YI; Koonin EV
    J Bacteriol; 2013 Sep; 195(17):3834-44. PubMed ID: 23794616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.