These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35660054)

  • 1. Estimation of phosphate extractability in flooded soils: Effect of solid-solution ratio and bicarbonate concentration.
    Amini M; Antelo J; Fiol S; Rahnemaie R
    Chemosphere; 2022 Sep; 303(Pt 3):135188. PubMed ID: 35660054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of phosphate sorption in lowland soils under oxic and anoxic conditions.
    Heiberg L; Pedersen TV; Jensen HS; Kjaergaard C; Hansen HC
    J Environ Qual; 2010; 39(2):734-43. PubMed ID: 20176846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils.
    Bhattacharyya A; Campbell AN; Tfaily MM; Lin Y; Kukkadapu RK; Silver WL; Nico PS; Pett-Ridge J
    Environ Sci Technol; 2018 Dec; 52(24):14129-14139. PubMed ID: 30451506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the effects of humic acid and anoxic condition on phosphate adsorption onto goethite.
    Amini M; Antelo J; Fiol S; Rahnemaie R
    Chemosphere; 2020 Aug; 253():126691. PubMed ID: 32294599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides.
    Ao M; Sun S; Deng T; Zhang F; Liu T; Tang Y; Li J; Wang S; Qiu R
    J Hazard Mater; 2022 Jul; 433():128805. PubMed ID: 35381512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation kinetics of exogenous nickel in a paddy soil during anoxic-oxic alteration: Roles of organic matter and iron oxides.
    Huang K; Yang Y; Lu H; Hu S; Chen G; Du Y; Liu T; Li X; Li F
    J Hazard Mater; 2023 Jun; 452():131246. PubMed ID: 36989790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-dependent effects of phosphate on arsenic speciation in paddy soils.
    Deng Y; Weng L; Li Y; Chen Y; Ma J
    Environ Pollut; 2020 Sep; 264():114783. PubMed ID: 32428817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Reactive Surface Area of Soils and the Association of Soil Organic Carbon with Natural Oxide Nanoparticles Using Ferrihydrite as Proxy.
    Mendez JC; Hiemstra T; Koopmans GF
    Environ Sci Technol; 2020 Oct; 54(19):11990-12000. PubMed ID: 32902278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics.
    Jafarnejadi AR; Sayyad G; Homaee M; Davamei AH
    Environ Monit Assess; 2013 May; 185(5):4087-96. PubMed ID: 22948289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of cadmium in polluted soils by phytogenic iron oxide nanoparticles.
    Lin J; Sun M; Su B; Owens G; Chen Z
    Sci Total Environ; 2019 Apr; 659():491-498. PubMed ID: 31096378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors controlling shallow subsurface dissolved reactive phosphorus concentration and loss kinetics from poorly drained saturated grassland soils.
    Smith GJ; McDowell RW; Daly K; Ó hUallacháin D; Condron LM; Fenton O
    J Environ Qual; 2023 Mar; 52(2):355-366. PubMed ID: 36481970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils.
    Heiberg L; Koch CB; Kjaergaard C; Jensen HS; Hans Christian BH
    J Environ Qual; 2012; 41(3):938-49. PubMed ID: 22565275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications- A review.
    Shaheen SM; Alessi DS; Tack FMG; Ok YS; Kim KH; Gustafsson JP; Sparks DL; Rinklebe J
    Adv Colloid Interface Sci; 2019 Mar; 265():1-13. PubMed ID: 30685738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of organic carbon and metal oxide phases on sorption of 2,4,6-trichlorobenzoic acid under oxic and anoxic conditions.
    Ololade IA; Oladoja NA; Alomaja F; Ololade OO; Olaseni EO; Oloye FF; Adelagun RO
    Environ Monit Assess; 2015 Jan; 187(1):4170. PubMed ID: 25433543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB.
    Biswakarma J; Kang K; Schenkeveld WDC; Kraemer SM; Hering JG; Hug SJ
    Chemosphere; 2021 Jan; 263():128188. PubMed ID: 33297154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating phosphorus release from biosolids and manure-amended soils under anoxic conditions.
    Shober AL; Sims JT
    J Environ Qual; 2009; 38(1):309-18. PubMed ID: 19141821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox chemistry of nickel in soils and sediments: A review.
    Rinklebe J; Shaheen SM
    Chemosphere; 2017 Jul; 179():265-278. PubMed ID: 28371710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hematite enhances the immobilization of copper, cadmium and phosphorus in soil amended with hydroxyapatite under flooded conditions.
    Cui H; Zhang X; Wu Q; Zhang S; Xu L; Zhou J; Zheng X; Zhou J
    Sci Total Environ; 2020 Mar; 708():134590. PubMed ID: 31791791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.