These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 35660147)
1. Spectrum classification of citrus tissues infected by fungi and multispectral image identification of early rotten oranges. Luo W; Fan G; Tian P; Dong W; Zhang H; Zhan B Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121412. PubMed ID: 35660147 [TBL] [Abstract][Full Text] [Related]
2. Maturity Stage Discrimination of Jiang H; Hu Y; Jiang X; Zhou H Molecules; 2022 Sep; 27(19):. PubMed ID: 36234855 [TBL] [Abstract][Full Text] [Related]
3. Detection and classification of volatile compounds emitted by three fungi-infected citrus fruit using gas chromatography-mass spectrometry. Wu J; Cao J; Chen J; Huang L; Wang Y; Sun C; Sun C Food Chem; 2023 Jun; 412():135524. PubMed ID: 36736184 [TBL] [Abstract][Full Text] [Related]
4. Detection and classification of citrus green mold caused by Penicillium digitatum using multispectral imaging. Ghanei Ghooshkhaneh N; Golzarian MR; Mamarabadi M J Sci Food Agric; 2018 Jul; 98(9):3542-3550. PubMed ID: 29314049 [TBL] [Abstract][Full Text] [Related]
5. [Rapid Diagnosis of Sound, Yellow and Citrus Greening Leaves with Hyperspectral Imaging]. Sun XD; Liu YD; Xiao HC; Zhang ZC; Li ZM; Lü Q Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):551-6. PubMed ID: 30291777 [TBL] [Abstract][Full Text] [Related]
6. [Application of hyperspectral fluorescence image technology in detection of early rotten oranges]. Li JB; Wang FJ; Ying YB; Rao XQ Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):142-6. PubMed ID: 22497146 [TBL] [Abstract][Full Text] [Related]
7. [Analysis of chlorophyll in Gannan navel orange with algorithm of GA and SPA based on hyperspectral]. Liu YD; Zhang GW; Cai LJ Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3377-80. PubMed ID: 23427571 [TBL] [Abstract][Full Text] [Related]
8. Detection of early decayed oranges by structured-illumination reflectance imaging coupling with texture feature classification models. Cai Z; Huang W; Wang Q; Li J Front Plant Sci; 2022; 13():952942. PubMed ID: 36035725 [TBL] [Abstract][Full Text] [Related]
9. Detection of early decay on citrus using LW-NIR hyperspectral reflectance imaging coupled with two-band ratio and improved watershed segmentation algorithm. Tian X; Zhang C; Li J; Fan S; Yang Y; Huang W Food Chem; 2021 Oct; 360():130077. PubMed ID: 34022516 [TBL] [Abstract][Full Text] [Related]
10. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology]. Li XL; Yi SL; He SL; Lü Q; Xie RJ; Zheng YQ; Deng L Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2639-43. PubMed ID: 26669182 [TBL] [Abstract][Full Text] [Related]
11. [Identification of varieties of black bean using ground based hyperspectral imaging]. Zhang C; Liu F; Zhang HL; Kong WW; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):746-50. PubMed ID: 25208405 [TBL] [Abstract][Full Text] [Related]
12. Hyperspectral transmittance imaging detection of early decayed oranges caused by Penicillium digitatum using NFINDR-JMSAM algorithm with spectral feature separating. Cai L; Chen L; Li X; Zhang Y; Shi R; Li J Food Chem; 2024 Oct; 463(Pt 4):141535. PubMed ID: 39388876 [TBL] [Abstract][Full Text] [Related]
13. Nondestructive classification of soft rot disease in napa cabbage using hyperspectral imaging analysis. Song H; Yoon SR; Dang YM; Yang JS; Hwang IM; Ha JH Sci Rep; 2022 Aug; 12(1):14707. PubMed ID: 36038711 [TBL] [Abstract][Full Text] [Related]
14. Classification of Frozen Corn Seeds Using Hyperspectral VIS/NIR Reflectence Imaging. Zhang J; Dai L; Cheng F Molecules; 2019 Jan; 24(1):. PubMed ID: 30609734 [TBL] [Abstract][Full Text] [Related]
15. [Determination of soluble solids content in navel oranges by Vis/NIR diffuse transmission spectra combined with CARS method]. Sun T; Xu WL; Lin JL; Liu MH; He XW Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3229-33. PubMed ID: 23427541 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of identifying the authenticity of fresh and cooked mutton kebabs using visible and near-infrared hyperspectral imaging. Jiang H; Yuan W; Ru Y; Chen Q; Wang J; Zhou H Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121689. PubMed ID: 35914356 [TBL] [Abstract][Full Text] [Related]
17. Prediction of Soluble-Solid Content in Citrus Fruit Using Visible-Near-Infrared Hyperspectral Imaging Based on Effective-Wavelength Selection Algorithm. Kim MJ; Yu WH; Song DJ; Chun SW; Kim MS; Lee A; Kim G; Shin BS; Mo C Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475048 [TBL] [Abstract][Full Text] [Related]
18. A Micro-Damage Detection Method of Litchi Fruit Using Hyperspectral Imaging Technology. Xiong J; Lin R; Bu R; Liu Z; Yang Z; Yu L Sensors (Basel); 2018 Feb; 18(3):. PubMed ID: 29495421 [TBL] [Abstract][Full Text] [Related]
19. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Ru C; Li Z; Tang R Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052476 [TBL] [Abstract][Full Text] [Related]
20. A CNN model for early detection of pepper Phytophthora blight using multispectral imaging, integrating spectral and textural information. Duan Z; Li H; Li C; Zhang J; Zhang D; Fan X; Chen X Plant Methods; 2024 Jul; 20(1):115. PubMed ID: 39075512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]