BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35660371)

  • 21. Connecting temporal identity to mitosis: the regulation of Hunchback in Drosophila neuroblast lineages.
    Urban J; Mettler U
    Cell Cycle; 2006 May; 5(9):950-2. PubMed ID: 16687926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Klumpfuss, a putative Drosophila zinc finger transcription factor, acts to differentiate between the identities of two secondary precursor cells within one neuroblast lineage.
    Yang X; Bahri S; Klein T; Chia W
    Genes Dev; 1997 Jun; 11(11):1396-408. PubMed ID: 9192868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors.
    Tsuji T; Hasegawa E; Isshiki T
    Development; 2008 Dec; 135(23):3859-69. PubMed ID: 18948419
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Walsh KT; Doe CQ
    Development; 2017 Dec; 144(24):4552-4562. PubMed ID: 29158446
    [No Abstract]   [Full Text] [Related]  

  • 25. From temporal patterning to neuronal connectivity in Drosophila type I neuroblast lineages.
    Pollington HQ; Seroka AQ; Doe CQ
    Semin Cell Dev Biol; 2023 Jun; 142():4-12. PubMed ID: 35659165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain.
    Kuert PA; Hartenstein V; Bello BC; Lovick JK; Reichert H
    Dev Biol; 2014 Jun; 390(2):102-15. PubMed ID: 24713419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the roles of Notch, Delta, kuzbanian, and inscuteable during the development of Drosophila embryonic neuroblast lineages.
    Udolph G; Rath P; Tio M; Toh J; Fang W; Pandey R; Technau GM; Chia W
    Dev Biol; 2009 Dec; 336(2):156-68. PubMed ID: 19782677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets.
    Schmid A; Chiba A; Doe CQ
    Development; 1999 Nov; 126(21):4653-89. PubMed ID: 10518486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Hunchback temporal transcription factor determines motor neuron axon and dendrite targeting in
    Seroka AQ; Doe CQ
    Development; 2019 Apr; 146(7):. PubMed ID: 30890568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single cell RNA-seq analysis reveals temporally-regulated and quiescence-regulated gene expression in Drosophila larval neuroblasts.
    Dillon N; Cocanougher B; Sood C; Yuan X; Kohn AB; Moroz LL; Siegrist SE; Zlatic M; Doe CQ
    Neural Dev; 2022 Aug; 17(1):7. PubMed ID: 36002894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delta expression in post-mitotic neurons identifies distinct subsets of adult-specific lineages in Drosophila.
    Cornbrooks C; Bland C; Williams DW; Truman JW; Rand MD
    Dev Neurobiol; 2007 Jan; 67(1):23-38. PubMed ID: 17443769
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal transcription factors determine circuit membership by permanently altering motor neuron-to-muscle synaptic partnerships.
    Meng JL; Wang Y; Carrillo RA; Heckscher ES
    Elife; 2020 May; 9():. PubMed ID: 32391795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations in lottchen cause cell fate transformations in both neuroblast and glioblast lineages in the Drosophila embryonic central nervous system.
    Buescher M; Chia W
    Development; 1997 Feb; 124(3):673-81. PubMed ID: 9043082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ancestry-independent fate specification and plasticity in the developmental timing of a typical Drosophila neuronal lineage.
    Gaziova I; Bhat KM
    Development; 2009 Jan; 136(2):263-74. PubMed ID: 19088087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila.
    Bowman SK; Rolland V; Betschinger J; Kinsey KA; Emery G; Knoblich JA
    Dev Cell; 2008 Apr; 14(4):535-46. PubMed ID: 18342578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchical deployment of factors regulating temporal fate in a diverse neuronal lineage of the Drosophila central brain.
    Kao CF; Yu HH; He Y; Kao JC; Lee T
    Neuron; 2012 Feb; 73(4):677-84. PubMed ID: 22365543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conservation and evolutionary modifications of neuroblast expression patterns in insects.
    Biffar L; Stollewerk A
    Dev Biol; 2014 Apr; 388(1):103-16. PubMed ID: 24525296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system.
    Lacin H; Truman JW
    Elife; 2016 Mar; 5():e13399. PubMed ID: 26975248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stem Cell-Intrinsic, Seven-up-Triggered Temporal Factor Gradients Diversify Intermediate Neural Progenitors.
    Ren Q; Yang CP; Liu Z; Sugino K; Mok K; He Y; Ito M; Nern A; Otsuna H; Lee T
    Curr Biol; 2017 May; 27(9):1303-1313. PubMed ID: 28434858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recombineering Hunchback identifies two conserved domains required to maintain neuroblast competence and specify early-born neuronal identity.
    Tran KD; Miller MR; Doe CQ
    Development; 2010 May; 137(9):1421-30. PubMed ID: 20335359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.