These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35660461)

  • 1. A multi-site, multi-participant magnetoencephalography resting-state dataset to study dementia: The BioFIND dataset.
    Vaghari D; Bruna R; Hughes LE; Nesbitt D; Tibon R; Rowe JB; Maestu F; Henson RN
    Neuroimage; 2022 Sep; 258():119344. PubMed ID: 35660461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Late combination shows that MEG adds to MRI in classifying MCI versus controls.
    Vaghari D; Kabir E; Henson RN
    Neuroimage; 2022 May; 252():119054. PubMed ID: 35247546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer's disease.
    Nakamura A; Cuesta P; Fernández A; Arahata Y; Iwata K; Kuratsubo I; Bundo M; Hattori H; Sakurai T; Fukuda K; Washimi Y; Endo H; Takeda A; Diers K; Bajo R; Maestú F; Ito K; Kato T
    Brain; 2018 May; 141(5):1470-1485. PubMed ID: 29522156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment.
    Lombardi G; Crescioli G; Cavedo E; Lucenteforte E; Casazza G; Bellatorre AG; Lista C; Costantino G; Frisoni G; Virgili G; Filippini G
    Cochrane Database Syst Rev; 2020 Mar; 3(3):CD009628. PubMed ID: 32119112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
    Spasov S; Passamonti L; Duggento A; Liò P; Toschi N;
    Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberrant MEG multi-frequency phase temporal synchronization predicts conversion from mild cognitive impairment-to-Alzheimer's disease.
    Pusil S; Dimitriadis SI; López ME; Pereda E; Maestú F
    Neuroimage Clin; 2019; 24():101972. PubMed ID: 31522127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry.
    Sørensen L; Igel C; Pai A; Balas I; Anker C; Lillholm M; Nielsen M;
    Neuroimage Clin; 2017; 13():470-482. PubMed ID: 28119818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI.
    Chen Z; Chen K; Li Y; Geng D; Li X; Liang X; Lu H; Ding S; Xiao Z; Ma X; Zheng L; Ding D; Zhao Q; Yang L;
    Hum Brain Mapp; 2024 Jan; 45(1):e26529. PubMed ID: 37991144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillatory Activity of the Hippocampus in Prodromal Alzheimer's Disease: A Source-Space Magnetoencephalography Study.
    Luppi JJ; Schoonhoven DN; van Nifterick AM; Gouw AA; Hillebrand A; Scheltens P; Stam CJ; de Haan W
    J Alzheimers Dis; 2022; 87(1):317-333. PubMed ID: 35311705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reducing variations in multi-center Alzheimer's disease classification with convolutional adversarial autoencoder.
    Cobbinah BM; Sorg C; Yang Q; Ternblom A; Zheng C; Han W; Che L; Shao J
    Med Image Anal; 2022 Nov; 82():102585. PubMed ID: 36057187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
    Liu M; Li F; Yan H; Wang K; Ma Y; ; Shen L; Xu M
    Neuroimage; 2020 Mar; 208():116459. PubMed ID: 31837471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ensemble learning system for a 4-way classification of Alzheimer's disease and mild cognitive impairment.
    Yao D; Calhoun VD; Fu Z; Du Y; Sui J
    J Neurosci Methods; 2018 May; 302():75-81. PubMed ID: 29578038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database.
    Dimitriadis SI; Liparas D; Tsolaki MN;
    J Neurosci Methods; 2018 May; 302():14-23. PubMed ID: 29269320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.
    Khazaee A; Ebrahimzadeh A; Babajani-Feremi A
    Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiparametric MRI for the improved diagnostic accuracy of Alzheimer's disease and mild cognitive impairment: Research protocol of a case-control study design.
    Piersson AD; Ibrahim B; Suppiah S; Mohamad M; Hassan HA; Omar NF; Ibrahim MI; Yusoff AN; Ibrahim N; Saripan MI; Razali RM
    PLoS One; 2021; 16(9):e0252883. PubMed ID: 34547018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: reduced neuronal coupling variability in mild cognitive impairment and dementia due to Alzheimer's disease.
    Núñez P; Poza J; Gómez C; Rodríguez-González V; Hillebrand A; Tola-Arribas MA; Cano M; Hornero R
    J Neural Eng; 2019 Sep; 16(5):056030. PubMed ID: 31112938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypersynchronization in mild cognitive impairment: the 'X' model.
    Pusil S; López ME; Cuesta P; Bruña R; Pereda E; Maestú F
    Brain; 2019 Dec; 142(12):3936-3950. PubMed ID: 31633176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of Alzheimer's Disease and Mild Cognitive Impairment Based on Cortical and Subcortical Features from MRI T1 Brain Images Utilizing Four Different Types of Datasets.
    Toshkhujaev S; Lee KH; Choi KY; Lee JJ; Kwon GR; Gupta Y; Lama RK
    J Healthc Eng; 2020; 2020():3743171. PubMed ID: 32952988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.
    Forouzannezhad P; Abbaspour A; Fang C; Cabrerizo M; Loewenstein D; Duara R; Adjouadi M
    J Neurosci Methods; 2019 Apr; 317():121-140. PubMed ID: 30593787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and Spatial Analysis of Alzheimer's Disease Based on an Improved Convolutional Neural Network and a Resting-State FMRI Brain Functional Network.
    Sun H; Wang A; He S
    Int J Environ Res Public Health; 2022 Apr; 19(8):. PubMed ID: 35457373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.