These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35660564)

  • 41. Effects and mechanistic aspects of absorbing organic compounds by coking coal.
    Ning K; Wang J; Xu H; Sun X; Huang G; Liu G; Zhou L
    Water Sci Technol; 2017 Nov; 76(9-10):2280-2290. PubMed ID: 29144286
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Copper-based Ruddlesden-Popper perovskite oxides activated hydrogen peroxide for coal pyrolysis wastewater (CPW) degradation: Performance and mechanism.
    Li J; Zhong D; Chen Y; Li K; Ma W; Zhang S; Zhang J; Sun A; Xie H
    Environ Res; 2023 Jan; 216(Pt 2):114591. PubMed ID: 36272586
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel insights into anoxic/aerobic(1)/aerobic(2) biological fluidized-bed system for coke wastewater treatment by fluorescence excitation-emission matrix spectra coupled with parallel factor analysis.
    Ou HS; Wei CH; Mo CH; Wu HZ; Ren Y; Feng CH
    Chemosphere; 2014 Oct; 113():158-64. PubMed ID: 25065804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation of biologically activated lignite immobilized SRB particles and their AMD treatment characteristics.
    Di J; Jiang Y; Wang M; Dong Y
    Sci Rep; 2022 Mar; 12(1):3964. PubMed ID: 35273309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxygen reduction reaction electrocatalysis inducing Fenton-like processes with enhanced electrocatalytic performance based on mesoporous ZnO/CuO cathodes: Treatment of organic wastewater and catalytic principle.
    Zhou Y; Zhang Y; Li Z; Hao C; Wang Y; Li Y; Dang Y; Sun X; Han G; Fu Y
    Chemosphere; 2020 Nov; 259():127463. PubMed ID: 32599388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The occurrence and fate of phenolic compounds in a coking wastewater treatment plant.
    Zhang W; Wei C; Feng C; Ren Y; Hu Y; Yan B; Wu C
    Water Sci Technol; 2013; 68(2):433-40. PubMed ID: 23863439
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrocatalysis degradation of coal tar wastewater using a novel hydrophobic benzalacetone modified lead dioxide electrode.
    Yu N; Wei J; Gu Z; Sun H; Guo Y; Zong J; Li X; Ni P; Han E
    Chemosphere; 2022 Feb; 289():133014. PubMed ID: 34864013
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative investigation on carbon-based moving bed biofilm reactor (MBBR) for synchronous removal of phenols and ammonia in treating coal pyrolysis wastewater at pilot-scale.
    Zheng M; Zhu H; Han Y; Xu C; Zhang Z; Han H
    Bioresour Technol; 2019 Sep; 288():121590. PubMed ID: 31195361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ecological and functional research into microbiomes for targeted phenolic removal in anoxic carbon-based fluidized bed reactor (CBFBR) treating coal pyrolysis wastewater (CPW).
    Zheng M; Shi J; Xu C; Ma W; Zhang Z; Zhu H; Han H
    Bioresour Technol; 2020 Jul; 308():123308. PubMed ID: 32278997
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of different pH coking wastewater on adsorption of coking coal.
    Gao L; Li S; Wang Y
    Water Sci Technol; 2016; 73(3):582-7. PubMed ID: 26877041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison and distribution of copper oxide nanoparticles and copper ions in activated sludge reactors.
    Zhang D; Trzcinski AP; Oh HS; Chew E; Tan SK; Ng WJ; Liu Y
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 May; 52(6):507-514. PubMed ID: 28276890
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effective degradation of chloramphenicol in wastewater by activated peroxymonosulfate with Fe-rich porous biochar derived from petrochemical sludge.
    Qian L; Yan S; Yong X; Selvaraj M; Ghramh HA; Assiri MA; Zhang X; Awasthi MK; Zhou J
    Chemosphere; 2023 Jan; 310():136839. PubMed ID: 36244417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation of persulfate by mesoporous silica spheres-doping CuO for bisphenol A removal.
    Liang S; Ziyu Z; Fulong W; Maojuan B; Xiaoyan D; Lingyun W
    Environ Res; 2022 Apr; 205():112529. PubMed ID: 34883081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effective adsorption of diclofenac sodium from neutral aqueous solution by low-cost lignite activated cokes.
    Wu L; Du C; He J; Yang Z; Li H
    J Hazard Mater; 2020 Feb; 384():121284. PubMed ID: 31628061
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.
    Wang Y; Liang M; Fang J; Fu J; Chen X
    Chemosphere; 2017 Sep; 182():468-476. PubMed ID: 28521161
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Degradation of p-Nitrophenol using magnetic Fe
    Wan D; Li W; Wang G; Lu L; Wei X
    Sci Total Environ; 2017 Jan; 574():1326-1334. PubMed ID: 27519319
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coke dust enhances coke plant wastewater treatment.
    Burmistrz P; Rozwadowski A; Burmistrz M; Karcz A
    Chemosphere; 2014 Dec; 117():278-84. PubMed ID: 25113994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treatment of landfill leachate biochemical effluent using the nano-Fe
    Liu Z; Li X; Rao Z; Hu F
    J Environ Manage; 2018 Feb; 208():159-168. PubMed ID: 29268183
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surfactant-assisted synthesis of copper oxide nanorods for the enhanced photocatalytic degradation of Reactive Black 5 dye in wastewater.
    Rao MPC; Kulandaivelu K; Ponnusamy VK; Wu JJ; Sambandam A
    Environ Sci Pollut Res Int; 2020 May; 27(15):17438-17445. PubMed ID: 31119545
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fe
    Ozturk D
    Sci Total Environ; 2022 Jul; 828():154473. PubMed ID: 35278567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.