These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 35660588)
1. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag. Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588 [TBL] [Abstract][Full Text] [Related]
2. Co-treatment of electroplating sludge, copper slag, and spent cathode carbon for recovering and solidifying heavy metals. Yong Y; Hua W; Jianhang H J Hazard Mater; 2021 Sep; 417():126020. PubMed ID: 33992022 [TBL] [Abstract][Full Text] [Related]
3. A metallurgical approach for separation and recovery of Cu, Cr, and Ni from electroplating sludge. Xiao Y; Li L; He J; Sun Y; Lei Y Sci Total Environ; 2024 Apr; 921():171130. PubMed ID: 38401729 [TBL] [Abstract][Full Text] [Related]
4. A novel method for effective solidifying chromium and preparing crude stainless steel from multi-metallic electroplating sludge. Heng W; Yong Y; Jianhang H; Hua W J Hazard Mater; 2024 Mar; 465():133068. PubMed ID: 38043422 [TBL] [Abstract][Full Text] [Related]
5. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification. Huang R; Huang KL; Lin ZY; Wang JW; Lin C; Kuo YM J Environ Manage; 2013 Nov; 129():586-92. PubMed ID: 24036091 [TBL] [Abstract][Full Text] [Related]
6. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching. Li C; Xie F; Ma Y; Cai T; Li H; Huang Z; Yuan G J Hazard Mater; 2010 Jun; 178(1-3):823-33. PubMed ID: 20197211 [TBL] [Abstract][Full Text] [Related]
7. Novel method for comprehensive utilization of MSWI fly ash through co-reduction with red mud to prepare crude alloy and cleaned slag. Geng C; Liu J; Wu S; Jia Y; Du B; Yu S J Hazard Mater; 2020 Feb; 384():121315. PubMed ID: 31581013 [TBL] [Abstract][Full Text] [Related]
8. Transformation behavior of heavy metal during Co-thermal treatment of hazardous waste incineration fly ash and slag/electroplating sludge. Long Y; Song Y; Huang H; Yang Y; Shen D; Geng H; Ruan J; Gu F J Environ Manage; 2024 Feb; 351():119730. PubMed ID: 38086123 [TBL] [Abstract][Full Text] [Related]
9. Co-treatment of copper electrolytic sludges and copper scraps for the recycled utilization of copper and arsenic. Xu J; Li L; Xu Z; Xiao Y; Lei Y; Liu Y Chemosphere; 2023 Nov; 341():140065. PubMed ID: 37673184 [TBL] [Abstract][Full Text] [Related]
10. Recovery of Ni matte from Ni-bearing electroplating sludge. Wang HY; Li Y; Jiao SQ; Chou KC; Zhang GH J Environ Manage; 2023 Jan; 326(Pt A):116744. PubMed ID: 36375435 [TBL] [Abstract][Full Text] [Related]
11. Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM). Tian B; Cui Y; Qin Z; Wen L; Li Z; Chu H; Xin B J Environ Manage; 2022 Jun; 312():114927. PubMed ID: 35358844 [TBL] [Abstract][Full Text] [Related]
12. A potential industrial waste-waste co-treatment process of utilizing waste SO Wan X; Taskinen P; Shi J; Jokilaakso A J Hazard Mater; 2021 Jul; 414():125541. PubMed ID: 33677318 [TBL] [Abstract][Full Text] [Related]
13. Stepwise recycling of Fe, Cu, Zn and Ni from real electroplating sludge via coupled acidic leaching and hydrothermal and extraction routes. Yuxin Z; Ting S; Hongyu C; Ying Z; Zhi G; Suiyi Z; Xinfeng X; Hong Z; Yidi G; Yang H Environ Res; 2023 Jan; 216(Pt 1):114462. PubMed ID: 36191617 [TBL] [Abstract][Full Text] [Related]
14. Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash. Yue Y; Zhang J; Sun F; Wu S; Pan Y; Zhou J; Qian G J Environ Manage; 2019 Feb; 232():226-235. PubMed ID: 30476684 [TBL] [Abstract][Full Text] [Related]
15. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders. Chen H; Yuan H; Mao L; Hashmi MZ; Xu F; Tang X Chemosphere; 2020 Feb; 240():124885. PubMed ID: 31568939 [TBL] [Abstract][Full Text] [Related]
16. [Thermal analysis and the distribution rule of heavy metals during electroplating sludge combustion]. Tan ZX; Yan JH; Jiang XG; Xue HD; Chi Y Huan Jing Ke Xue; 2006 May; 27(5):998-1002. PubMed ID: 16850848 [TBL] [Abstract][Full Text] [Related]
17. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. Jarošíková A; Ettler V; Mihaljevič M; Kříbek B; Mapani B J Environ Manage; 2017 Feb; 187():178-186. PubMed ID: 27889660 [TBL] [Abstract][Full Text] [Related]
18. Recovery of nickel and preparation of ferronickel alloy from spent petroleum catalyst via cooperative smelting-vitrification process with coal fly ash. Sun S; Yang K; Liu C; Tu G; Xiao F Environ Technol; 2024 Apr; 45(11):2108-2118. PubMed ID: 34727838 [TBL] [Abstract][Full Text] [Related]
19. Metal mobility and toxicity of reclaimed copper smelting fly ash and smelting slag. Shu J; Lei T; Deng Y; Chen M; Zeng X; Liu R RSC Adv; 2021 Feb; 11(12):6877-6884. PubMed ID: 35423186 [TBL] [Abstract][Full Text] [Related]
20. A novel process for preparing Fe-Cr-Ni-C alloy: synergetic reduction of stainless steel dust and laterite nickel ore. Liu P; Liu Z; Chu M; Yan R; Li F; Tang J Environ Sci Pollut Res Int; 2022 Sep; 29(43):65500-65520. PubMed ID: 35499736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]