BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 35660588)

  • 1. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
    Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y
    Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-treatment of electroplating sludge, copper slag, and spent cathode carbon for recovering and solidifying heavy metals.
    Yong Y; Hua W; Jianhang H
    J Hazard Mater; 2021 Sep; 417():126020. PubMed ID: 33992022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A metallurgical approach for separation and recovery of Cu, Cr, and Ni from electroplating sludge.
    Xiao Y; Li L; He J; Sun Y; Lei Y
    Sci Total Environ; 2024 Apr; 921():171130. PubMed ID: 38401729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method for effective solidifying chromium and preparing crude stainless steel from multi-metallic electroplating sludge.
    Heng W; Yong Y; Jianhang H; Hua W
    J Hazard Mater; 2024 Mar; 465():133068. PubMed ID: 38043422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification.
    Huang R; Huang KL; Lin ZY; Wang JW; Lin C; Kuo YM
    J Environ Manage; 2013 Nov; 129():586-92. PubMed ID: 24036091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.
    Li C; Xie F; Ma Y; Cai T; Li H; Huang Z; Yuan G
    J Hazard Mater; 2010 Jun; 178(1-3):823-33. PubMed ID: 20197211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel method for comprehensive utilization of MSWI fly ash through co-reduction with red mud to prepare crude alloy and cleaned slag.
    Geng C; Liu J; Wu S; Jia Y; Du B; Yu S
    J Hazard Mater; 2020 Feb; 384():121315. PubMed ID: 31581013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation behavior of heavy metal during Co-thermal treatment of hazardous waste incineration fly ash and slag/electroplating sludge.
    Long Y; Song Y; Huang H; Yang Y; Shen D; Geng H; Ruan J; Gu F
    J Environ Manage; 2024 Feb; 351():119730. PubMed ID: 38086123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-treatment of copper electrolytic sludges and copper scraps for the recycled utilization of copper and arsenic.
    Xu J; Li L; Xu Z; Xiao Y; Lei Y; Liu Y
    Chemosphere; 2023 Nov; 341():140065. PubMed ID: 37673184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of Ni matte from Ni-bearing electroplating sludge.
    Wang HY; Li Y; Jiao SQ; Chou KC; Zhang GH
    J Environ Manage; 2023 Jan; 326(Pt A):116744. PubMed ID: 36375435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM).
    Tian B; Cui Y; Qin Z; Wen L; Li Z; Chu H; Xin B
    J Environ Manage; 2022 Jun; 312():114927. PubMed ID: 35358844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A potential industrial waste-waste co-treatment process of utilizing waste SO
    Wan X; Taskinen P; Shi J; Jokilaakso A
    J Hazard Mater; 2021 Jul; 414():125541. PubMed ID: 33677318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepwise recycling of Fe, Cu, Zn and Ni from real electroplating sludge via coupled acidic leaching and hydrothermal and extraction routes.
    Yuxin Z; Ting S; Hongyu C; Ying Z; Zhi G; Suiyi Z; Xinfeng X; Hong Z; Yidi G; Yang H
    Environ Res; 2023 Jan; 216(Pt 1):114462. PubMed ID: 36191617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash.
    Yue Y; Zhang J; Sun F; Wu S; Pan Y; Zhou J; Qian G
    J Environ Manage; 2019 Feb; 232():226-235. PubMed ID: 30476684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders.
    Chen H; Yuan H; Mao L; Hashmi MZ; Xu F; Tang X
    Chemosphere; 2020 Feb; 240():124885. PubMed ID: 31568939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Thermal analysis and the distribution rule of heavy metals during electroplating sludge combustion].
    Tan ZX; Yan JH; Jiang XG; Xue HD; Chi Y
    Huan Jing Ke Xue; 2006 May; 27(5):998-1002. PubMed ID: 16850848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.
    Jarošíková A; Ettler V; Mihaljevič M; Kříbek B; Mapani B
    J Environ Manage; 2017 Feb; 187():178-186. PubMed ID: 27889660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of nickel and preparation of ferronickel alloy from spent petroleum catalyst via cooperative smelting-vitrification process with coal fly ash.
    Sun S; Yang K; Liu C; Tu G; Xiao F
    Environ Technol; 2024 Apr; 45(11):2108-2118. PubMed ID: 34727838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal mobility and toxicity of reclaimed copper smelting fly ash and smelting slag.
    Shu J; Lei T; Deng Y; Chen M; Zeng X; Liu R
    RSC Adv; 2021 Feb; 11(12):6877-6884. PubMed ID: 35423186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel process for preparing Fe-Cr-Ni-C alloy: synergetic reduction of stainless steel dust and laterite nickel ore.
    Liu P; Liu Z; Chu M; Yan R; Li F; Tang J
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):65500-65520. PubMed ID: 35499736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.