BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35660822)

  • 1. The kinetic mechanism of cations induced protein nanotubes self-assembly and their application as delivery system.
    Zhang J; Wang Q; Liu B; Li D; Zhang H; Wang P; Liu J; Hou G; Li X; Yuan Y; Li Z; Chen S; Yan H; Li Y
    Biomaterials; 2022 Jul; 286():121600. PubMed ID: 35660822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The construction of enzymolyzed α-lactalbumin based micellar nanoassemblies for encapsulating various kinds of hydrophobic bioactive compounds.
    Hu Y; Bao C; Li D; You L; Du Y; Liu B; Li X; Ren F; Li Y
    Food Funct; 2019 Dec; 10(12):8263-8272. PubMed ID: 31720654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-Induced Reassembly between Protein Nanotubes and Nanospheres.
    Zhang J; Liu B; Li D; Radiom M; Zhang H; Cohen Stuart MA; Sagis LMC; Li Z; Chen S; Li X; Li Y
    Biomacromolecules; 2023 Sep; 24(9):3985-3995. PubMed ID: 37642585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fortification of encapsulated soy isoflavones and texture modification of soy milk by α-lactalbumin nanotubes.
    Liu B; Thum C; Wang Q; Feng C; Li T; Damiani Victorelli F; Li X; Chang R; Chen S; Gong Y; Li Y
    Food Chem; 2023 Sep; 419():135979. PubMed ID: 37030206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the structure of alpha-lactalbumin protein nanotubes using optical spectroscopy.
    Tarhan O; Tarhan E; Harsa S
    J Dairy Res; 2014 Feb; 81(1):98-106. PubMed ID: 24351706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatically Partially Hydrolyzed α-Lactalbumin Peptides for Self-Assembled Micelle Formation and Their Application for Coencapsulation of Multiple Antioxidants.
    Jiang P; Huang J; Bao C; Jiao L; Zhao H; Du Y; Fazheng R; Li Y
    J Agric Food Chem; 2018 Dec; 66(49):12921-12930. PubMed ID: 30359000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and binding ability of self-assembled α-lactalbumin protein nanotubular gels.
    Tarhan Ö; Hamaker BR; Campanella OH
    Biotechnol Prog; 2021 May; 37(3):e3127. PubMed ID: 33464699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Transport of Shape and Rigidity-Tuned α-Lactalbumin Nanotubes across Intestinal Mucus and Cellular Barriers.
    Bao C; Liu B; Li B; Chai J; Zhang L; Jiao L; Li D; Yu Z; Ren F; Shi X; Li Y
    Nano Lett; 2020 Feb; 20(2):1352-1361. PubMed ID: 31904988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of pH, protein concentration and calcium ratio on the formation and structure of nanotubes from partially hydrolyzed bovine α-lactalbumin.
    Geng X; Kirkensgaard JJK; Arleth L; Otte J; Ipsen R
    Soft Matter; 2019 Jun; 15(24):4787-4796. PubMed ID: 31062808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubular Assembly Formation Induced by Leucine Alignment along the Hydrophobic Helix of Amphiphilic Polypeptides.
    Abosheasha MA; Itagaki T; Ito Y; Ueda M
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different nanostructures caused by competition of intra- and inter-β-sheet interactions in hierarchical self-assembly of short peptides.
    Zhou P; Deng L; Wang Y; Lu JR; Xu H
    J Colloid Interface Sci; 2016 Feb; 464():219-28. PubMed ID: 26619132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology control between twisted ribbon, helical ribbon, and nanotube self-assemblies with his-containing helical peptides in response to pH change.
    Uesaka A; Ueda M; Makino A; Imai T; Sugiyama J; Kimura S
    Langmuir; 2014 Feb; 30(4):1022-8. PubMed ID: 24410257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New route for self-assembly of α-lactalbumin nanotubes and their use as templates to grow silver nanotubes.
    Fu WC; Opazo MA; Acuña SM; Toledo PG
    PLoS One; 2017; 12(4):e0175680. PubMed ID: 28403179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the morphology of cross beta-sheet assemblies by rational design.
    Deechongkit S; Powers ET; You SL; Kelly JW
    J Am Chem Soc; 2005 Jun; 127(23):8562-70. PubMed ID: 15941292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils.
    Zhao Y; Deng L; Wang J; Xu H; Lu JR
    Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-Induced Phase Separation in Molecular Assembly of Nanotubes Comprising Amphiphilic Polypeptoid with Poly( N-ethyl glycine) in Water by a Hydrophilic-Region-Driven-Type Mechanism.
    Hattori T; Itagaki T; Uji H; Kimura S
    J Phys Chem B; 2018 Jul; 122(28):7178-7184. PubMed ID: 29924608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of partially hydrolysed alpha-lactalbumin.
    Ipsen R; Otte J
    Biotechnol Adv; 2007; 25(6):602-5. PubMed ID: 17855040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. End-Sealing of Peptide Nanotubes by Cationic Amphiphilic Polypeptides and Their Salt-Responsive Accordion-like Opening and Closing Behavior.
    Son K; Takeoka S; Ito Y; Ueda M
    Biomacromolecules; 2022 Jul; 23(7):2785-2792. PubMed ID: 35700101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles.
    Ziserman L; Lee HY; Raghavan SR; Mor A; Danino D
    J Am Chem Soc; 2011 Mar; 133(8):2511-7. PubMed ID: 21244023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.