These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35660893)

  • 1. Bioinspired core-shell silica nanoparticles monitoring extra- and intra-cellular drug release.
    Tengjisi ; Liu Y; Zou D; Yang G; Zhao CX
    J Colloid Interface Sci; 2022 Oct; 624():242-250. PubMed ID: 35660893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic core-shell silica nanoparticles using a dual-functional peptide.
    Tengjisi ; Hui Y; Yang G; Fu C; Liu Y; Zhao CX
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):185-194. PubMed ID: 32771730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. J-Aggregate-Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading.
    Liu Y; Yang G; Jin S; Zhang R; Chen P; Tengjisi ; Wang L; Chen D; Weitz DA; Zhao CX
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20065-20074. PubMed ID: 32743867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal Mesoporous Silica Nanocarriers for Dual Stimuli-Responsive Drug Release and Excellent Photothermal Ablation of Cancer Cells.
    Tran VA; Vo VG; Shim K; Lee SW; An SSA
    Int J Nanomedicine; 2020; 15():7667-7685. PubMed ID: 33116494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of hybrid films from perylenediimide-labeled core-shell silica-polymer nanoparticles.
    Ribeiro T; Fedorov A; Baleizão C; Farinha JP
    J Colloid Interface Sci; 2013 Jul; 401():14-22. PubMed ID: 23622686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer from silica core-surfactant shell nanoparticles to hosted molecular fluorophores.
    Rampazzo E; Bonacchi S; Juris R; Montalti M; Genovese D; Zaccheroni N; Prodi L; Rambaldi DC; Zattoni A; Reschiglian P
    J Phys Chem B; 2010 Nov; 114(45):14605-13. PubMed ID: 21070057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoporous hybrid core-shell nanoparticles for sequential release.
    Jahns M; Warwas DP; Krey MR; Nolte K; König S; Fröba M; Behrens P
    J Mater Chem B; 2020 Jan; 8(4):776-786. PubMed ID: 31898715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release.
    Lai J; Shah BP; Garfunkel E; Lee KB
    ACS Nano; 2013 Mar; 7(3):2741-50. PubMed ID: 23445171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds.
    Hui C; Shen C; Tian J; Bao L; Ding H; Li C; Tian Y; Shi X; Gao HJ
    Nanoscale; 2011 Feb; 3(2):701-5. PubMed ID: 21103488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization and bactericidal activity of silica/silver core-shell nanoparticles.
    Devi P; Patil SD; Jeevanandam P; Navani NK; Singla ML
    J Mater Sci Mater Med; 2014 May; 25(5):1267-73. PubMed ID: 24515862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier.
    Ran Z; Sun Y; Chang B; Ren Q; Yang W
    J Colloid Interface Sci; 2013 Nov; 410():94-101. PubMed ID: 24011559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustained Protein Release from a Core-Shell Drug Carrier System Comprised of Mesoporous Nanoparticles and an Injectable Hydrogel.
    Manavitehrani I; Fathi A; Schindeler A; Dehghani F
    Macromol Biosci; 2018 Dec; 18(12):e1800201. PubMed ID: 30395416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellularly monitoring/imaging the release of doxorubicin from pH-responsive nanoparticles using Förster resonance energy transfer.
    Chen KJ; Chiu YL; Chen YM; Ho YC; Sung HW
    Biomaterials; 2011 Apr; 32(10):2586-92. PubMed ID: 21251711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folate-decorated PEG-PLGA nanoparticles with silica shells for capecitabine controlled and targeted delivery.
    Wei K; Peng X; Zou F
    Int J Pharm; 2014 Apr; 464(1-2):225-33. PubMed ID: 24463073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct silica coating of drug crystals for ultra-high loading.
    Wang N; Zhou W; Yan M; Zhang M; Wang H; Chen H
    Nanoscale; 2020 Mar; 12(9):5353-5358. PubMed ID: 32100771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoporous multi-silica layer-coated Y
    Ansari AA; Khan A; Labis JP; Alam M; Aslam Manthrammel M; Ahamed M; Akhtar MJ; Aldalbahi A; Ghaithan H
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():365-373. PubMed ID: 30606544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid silica-coated Gd-Zn-Cu-In-S/ZnS bimodal quantum dots as an epithelial cell adhesion molecule targeted drug delivery and imaging system.
    Akbarzadeh M; Babaei M; Abnous K; Taghdisi SM; Peivandi MT; Ramezani M; Alibolandi M
    Int J Pharm; 2019 Oct; 570():118645. PubMed ID: 31465835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Tracking of the Degradation of Mesoporous Silica through
    Bindini E; Ramirez MLA; Rios X; Cossío U; Simó C; Gomez-Vallejo V; Soler-Illia G; Llop J; Moya SE
    Small; 2021 Jul; 17(30):e2101519. PubMed ID: 34145769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of magnetite-silica core-shell nanoparticles via direct silicon oxidation.
    Wang S; Tang J; Zhao H; Wan J; Chen K
    J Colloid Interface Sci; 2014 Oct; 432():43-6. PubMed ID: 25072518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmed Synthesis by Stimuli-Responsive DNAzyme-Modified Mesoporous SiO2 Nanoparticles.
    Balogh D; Aleman Garcia MA; Albada HB; Willner I
    Angew Chem Int Ed Engl; 2015 Sep; 54(40):11652-6. PubMed ID: 25959900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.