These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 35661731)
1. State-of-the-art progress of metal-organic framework-based electrochemical and optical sensing platforms for determination of bisphenol A as an endocrine disruptor. Khataee A; Sohrabi H; Ehsani M; Agaei M; Sisi AJ; Abdi J; Yoon Y Environ Res; 2022 Sep; 212(Pt D):113536. PubMed ID: 35661731 [TBL] [Abstract][Full Text] [Related]
2. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Wang X; Lu X; Wu L; Chen J Biosens Bioelectron; 2015 Mar; 65():295-301. PubMed ID: 25461172 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of Metal-Organic Frameworks Quantum Dots Composites as Sensors for Endocrine-Disrupting Chemicals. Ajibade PA; Oloyede SO Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887328 [TBL] [Abstract][Full Text] [Related]
4. Applications of Functional Metal-Organic Frameworks in Biosensors. Du L; Chen W; Zhu P; Tian Y; Chen Y; Wu C Biotechnol J; 2021 Feb; 16(2):e1900424. PubMed ID: 32271998 [TBL] [Abstract][Full Text] [Related]
5. Response Characteristics of Bisphenols on a Metal-Organic Framework-Based Tyrosinase Nanosensor. Lu X; Wang X; Wu L; Wu L; Dhanjai ; Fu L; Gao Y; Chen J ACS Appl Mater Interfaces; 2016 Jun; 8(25):16533-9. PubMed ID: 27281291 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Electrochemical Sensors and Biosensors for Detecting Bisphenol A. Tajik S; Beitollahi H; Nejad FG; Zhang K; Le QV; Jang HW; Kim SY; Shokouhimehr M Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545829 [TBL] [Abstract][Full Text] [Related]
7. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Lv M; Zhou W; Tavakoli H; Bautista C; Xia J; Wang Z; Li X Biosens Bioelectron; 2021 Mar; 176():112947. PubMed ID: 33412430 [TBL] [Abstract][Full Text] [Related]
8. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Palakollu VN; Chen D; Tang JN; Wang L; Liu C Mikrochim Acta; 2022 Mar; 189(4):161. PubMed ID: 35344127 [TBL] [Abstract][Full Text] [Related]
9. A novel pencil graphite electrode modified with an iron-based conductive metal-organic framework exhibited good ability in simultaneous sensing bisphenol A and bisphenol S. Chen JY; Weng YX; Han YH; Ye RH; Huang DH Ecotoxicol Environ Saf; 2024 Mar; 272():116065. PubMed ID: 38330872 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. Ye RH; Chen JY; Huang DH; Wang YJ; Chen S Biosensors (Basel); 2022 May; 12(6):. PubMed ID: 35735515 [TBL] [Abstract][Full Text] [Related]
11. Rational functionalization of reduced graphene oxide with an imidazole group for the electrochemical sensing of bisphenol A - an endocrine disruptor. Manna B Analyst; 2018 Jul; 143(14):3451-3457. PubMed ID: 29922801 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Zhang X; Li G; Wu D; Zhang B; Hu N; Wang H; Liu J; Wu Y Biosens Bioelectron; 2019 Dec; 145():111699. PubMed ID: 31563802 [TBL] [Abstract][Full Text] [Related]
13. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Yildirim N; Long F; He M; Shi HC; Gu AZ Environ Sci Process Impacts; 2014 May; 16(6):1379-86. PubMed ID: 24788953 [TBL] [Abstract][Full Text] [Related]
14. Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review. Zhang J; Tan Y; Song WJ Mikrochim Acta; 2020 Mar; 187(4):234. PubMed ID: 32180011 [TBL] [Abstract][Full Text] [Related]
15. Metal organic frameworks as promising sensing tools for electrochemical detection of persistent heavy metal ions from water matrices: A concise review. Shafqat SS; Rizwan M; Batool M; Shafqat SR; Mustafa G; Rasheed T; Zafar MN Chemosphere; 2023 Mar; 318():137920. PubMed ID: 36690256 [TBL] [Abstract][Full Text] [Related]
16. Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Rasheed T; Rizwan K Biosens Bioelectron; 2022 Mar; 199():113867. PubMed ID: 34890884 [TBL] [Abstract][Full Text] [Related]
17. State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Huo YP; Liu S; Gao ZX; Ning BA; Wang Y Mikrochim Acta; 2021 Apr; 188(5):168. PubMed ID: 33884514 [TBL] [Abstract][Full Text] [Related]
19. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Zhang X; Li G; Wu D; Li X; Hu N; Chen J; Chen G; Wu Y Biosens Bioelectron; 2019 Jul; 137():178-198. PubMed ID: 31100598 [TBL] [Abstract][Full Text] [Related]
20. Target-regulated photoactivities of CdS/Ni-MOF heterojunction with [Ru(bpy) Tanjung AP; Yin K; Zhao L; Wu JZ; Wang AJ; Mei LP; Song P; Feng JJ Mikrochim Acta; 2024 Feb; 191(3):139. PubMed ID: 38360951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]