These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35661758)

  • 1. Combining Machine Learning and Backgrounded Membrane Imaging: A Case Study in Comparing and Classifying Different Types of Biopharmaceutically Relevant Particles.
    Calderon CP; Krhač Levačić A; Helbig C; Wuchner K; Menzen T
    J Pharm Sci; 2022 Sep; 111(9):2422-2434. PubMed ID: 35661758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backgrounded Membrane Imaging (BMI) for High-Throughput Characterization of Subvisible Particles During Biopharmaceutical Drug Product Development.
    Helbig C; Ammann G; Menzen T; Friess W; Wuchner K; Hawe A
    J Pharm Sci; 2020 Jan; 109(1):264-276. PubMed ID: 30914272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Features in Backgrounds of Microscopy Images Introduce Biases in Machine Learning Analyses.
    Greenblott DN; Johann F; Snell JR; Gieseler H; Calderon CP; Randolph TW
    J Pharm Sci; 2024 May; 113(5):1177-1189. PubMed ID: 38484874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image Classification of Degraded Polysorbate, Protein and Silicone Oil Sub-Visible Particles Detected by Flow-Imaging Microscopy in Biopharmaceuticals Using a Convolutional Neural Network Model.
    Fedorowicz FM; Chalus P; Kirschenbühler K; Drewes S; Koulov A
    J Pharm Sci; 2023 Dec; 112(12):3099-3108. PubMed ID: 37422283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening techniques for monitoring the sub-visible particle formation of free fatty acids in biopharmaceuticals.
    Chen W; Klemm D; Gregoritza K; Satya Krishna Kishore R; Olaf Stracke J; Wurth C; Pinto C; Sancho Oltra N
    Eur J Pharm Biopharm; 2023 Sep; 190():242-247. PubMed ID: 37524212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing Precision Limits of Neural Network-Based Quality Control Metrics in High-Throughput Digital Microscopy.
    Calderon CP; Ripple DC; Srinivasan C; Ma Y; Carrier MJ; Randolph TW; O'Connor TF
    Pharm Res; 2022 Feb; 39(2):263-279. PubMed ID: 35080706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional Neural Networks Enable Highly Accurate and Automated Subvisible Particulate Classification of Biopharmaceuticals.
    Wang S; Liaw A; Chen YM; Su Y; Skomski D
    Pharm Res; 2023 Jun; 40(6):1447-1457. PubMed ID: 36471026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning approaches to root cause analysis, characterization, and monitoring of subvisible particles in monoclonal antibody formulations.
    Greenblott DN; Zhang J; Calderon CP; Randolph TW
    Biotechnol Bioeng; 2022 Dec; 119(12):3596-3611. PubMed ID: 36124935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualitative High-Throughput Analysis of Subvisible Particles in Biological Formulations Using Backgrounded Membrane Imaging.
    Murphy MI; Bruque M; Hanford A; Trayton I; Handali M; Leissa JA; Hasige S; Day K; Patel SM
    J Pharm Sci; 2022 Jun; 111(6):1605-1613. PubMed ID: 35318031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a Self-Supervised Machine Learning Method for Screening of Particulate Samples: A Case Study in Liquid Formulations.
    Salami H; Wang S; Skomski D
    J Pharm Sci; 2023 Mar; 112(3):771-778. PubMed ID: 36240862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utility of Three Flow Imaging Microscopy Instruments for Image Analysis in Evaluating four Types of Subvisible Particle in Biopharmaceuticals.
    Nishiumi H; Deiringer N; Krause N; Yoneda S; Torisu T; Menzen T; Friess W; Uchiyama S
    J Pharm Sci; 2022 Nov; 111(11):3017-3028. PubMed ID: 35948157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Subvisible Particles in Biopharmaceutical Formulations Using Raman Spectroscopy Provides Insight into Polysorbate 20 Degradation Pathway.
    Saggu M; Liu J; Patel A
    Pharm Res; 2015 Sep; 32(9):2877-88. PubMed ID: 25773722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Convolutional Neural Network Analysis of Flow Imaging Microscopy Data to Classify Subvisible Particles in Protein Formulations.
    Calderon CP; Daniels AL; Randolph TW
    J Pharm Sci; 2018 Apr; 107(4):999-1008. PubMed ID: 29269269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Prediction of Free Fatty Acid Particle Formation in Biopharmaceutical Drug Products: Incorporating Ester Distribution during Polysorbate 20 Degradation.
    Doshi N; Martin J; Tomlinson A
    Mol Pharm; 2020 Nov; 17(11):4354-4363. PubMed ID: 32941040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free fatty acid particles in protein formulations, part 2: contribution of polysorbate raw material.
    Siska CC; Pierini CJ; Lau HR; Latypov RF; Fesinmeyer RM; Litowski JR
    J Pharm Sci; 2015 Feb; 104(2):447-56. PubMed ID: 25196966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended Characterization and Impact of Visible Fatty Acid Particles - A Case Study With a mAb Product.
    Saggu M; Demeule B; Jiang L; Kammerer D; Nayak PK; Tai M; Xiao N; Tomlinson A
    J Pharm Sci; 2021 Mar; 110(3):1093-1102. PubMed ID: 33271136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Subvisible Particles in Biotherapeutic Prefilled Syringes: The Role of Polysorbate and Protein on the Formation of Silicone Oil and Protein Subvisible Particles After Drop Shock.
    Jiao N; Barnett GV; Christian TR; Narhi LO; Joh NH; Joubert MK; Cao S
    J Pharm Sci; 2020 Jan; 109(1):640-645. PubMed ID: 31689431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a selective marker-based quantification of polysorbate 20 in biopharmaceutical formulations using UPLC QDa detection.
    Evers DH; Schultz-Fademrecht T; Garidel P; Buske J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Nov; 1157():122287. PubMed ID: 33069954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Protein-Like Reference Material for Semiquantitatively Monitoring Visible Proteinaceous Particles in Biopharmaceuticals.
    Telikepalli S; Gonzalez K; Dragulin-Otto S; Ripple D; Carrier M; Khan M
    PDA J Pharm Sci Technol; 2019; 73(5):418-432. PubMed ID: 31209163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty Acids Can Induce the Formation of Proteinaceous Particles in Monoclonal Antibody Formulations.
    Zhang J; He J; Smith KJ
    J Pharm Sci; 2022 Mar; 111(3):655-662. PubMed ID: 34666046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.