BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35661842)

  • 1. Comparative assessment of QM-based and MM-based models for prediction of protein-ligand binding affinity trends.
    Maier S; Thapa B; Erickson J; Raghavachari K
    Phys Chem Chem Phys; 2022 Jun; 24(23):14525-14537. PubMed ID: 35661842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Performance of MM/PBSA, MM/GBSA, and QM-MM/GBSA Approaches on Protein/Carbohydrate Complexes: Effect of Implicit Solvent Models, QM Methods, and Entropic Contributions.
    Mishra SK; Koča J
    J Phys Chem B; 2018 Aug; 122(34):8113-8121. PubMed ID: 30084252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.
    Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P
    Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A QM/MM study of the binding of RAPTA ligands to cathepsin B.
    Ciancetta A; Genheden S; Ryde U
    J Comput Aided Mol Des; 2011 Aug; 25(8):729-42. PubMed ID: 21701919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes.
    Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY
    Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) Simulation: A Tool for Structure-Based Drug Design and Discovery.
    Kulkarni PU; Shah H; Vyas VK
    Mini Rev Med Chem; 2022; 22(8):1096-1107. PubMed ID: 34620049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking.
    Hou T; Wang J; Li Y; Wang W
    J Comput Chem; 2011 Apr; 32(5):866-77. PubMed ID: 20949517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics calculation of protein-ligand interactions by QM/MM polarizable charge parameters.
    Wang J; Shao Q; Cossins BP; Shi J; Chen K; Zhu W
    J Biomol Struct Dyn; 2016; 34(1):163-76. PubMed ID: 25761118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy Decomposition Analysis of Protein-Ligand Interactions Using Molecules-in-Molecules Fragmentation-Based Method.
    Thapa B; Raghavachari K
    J Chem Inf Model; 2019 Aug; 59(8):3474-3484. PubMed ID: 31356073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies of F. tularensis enoyl-ACP reductase (FabI).
    Su PC; Tsai CC; Mehboob S; Hevener KE; Johnson ME
    J Comput Chem; 2015 Sep; 36(25):1859-73. PubMed ID: 26216222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.
    Bryce RA
    Future Med Chem; 2011 Apr; 3(6):683-98. PubMed ID: 21554075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of trypsin specificity based on QM/MM molecular dynamics simulation and QM/MM GBSA calculation.
    Chen J; Wang J; Zhang Q; Chen K; Zhu W
    J Biomol Struct Dyn; 2015; 33(12):2606-18. PubMed ID: 25562613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BRD4: quantum mechanical protein-ligand binding free energies using the full-protein DFT-based QM-PBSA method.
    Gundelach L; Fox T; Tautermann CS; Skylaris CK
    Phys Chem Chem Phys; 2022 Oct; 24(41):25240-25249. PubMed ID: 36222107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in binding free energies calculations: QM/MM-based free energy perturbation method for drug design.
    Rathore RS; Sumakanth M; Reddy MS; Reddanna P; Rao AA; Erion MD; Reddy MR
    Curr Pharm Des; 2013; 19(26):4674-86. PubMed ID: 23260025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods.
    Ryde U; Söderhjelm P
    Chem Rev; 2016 May; 116(9):5520-66. PubMed ID: 27077817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum-Mechanics Methodologies in Drug Discovery: Applications of Docking and Scoring in Lead Optimization.
    Crespo A; Rodriguez-Granillo A; Lim VT
    Curr Top Med Chem; 2017; 17(23):2663-2680. PubMed ID: 28685695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling study of checkpoint kinase 1 inhibitors by multiple docking strategies and prime/MM-GBSA calculation.
    Du J; Sun H; Xi L; Li J; Yang Y; Liu H; Yao X
    J Comput Chem; 2011 Oct; 32(13):2800-9. PubMed ID: 21717478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM Implementation in Drug Design: Does It Really Help?
    Liu J; He X
    Methods Mol Biol; 2020; 2114():19-35. PubMed ID: 32016884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragment-based quantum mechanical calculation of protein-protein binding affinities.
    Wang Y; Liu J; Li J; He X
    J Comput Chem; 2018 Aug; 39(21):1617-1628. PubMed ID: 29707784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.