These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35661910)
1. Sequential uptake of aldoses over fructose and enhanced phosphate solubilization in Rhizobium sp. RM. Champaneria A; Iyer B; Rajkumar S Appl Microbiol Biotechnol; 2022 Jun; 106(11):4251-4268. PubMed ID: 35661910 [TBL] [Abstract][Full Text] [Related]
2. Glucose and arabinose dependent mineral phosphate solubilization and its succinate-mediated catabolite repression in Rhizobium sp. RM and RS. Joshi E; Iyer B; Rajkumar S J Biosci Bioeng; 2019 Nov; 128(5):551-557. PubMed ID: 31147219 [TBL] [Abstract][Full Text] [Related]
3. Biochemical characterization of a fructokinase mutant of Rhizobium meliloti. Gardiol A; Arias A; Cerveñansky C; Gaggero C; Martínez-Drets G J Bacteriol; 1980 Oct; 144(1):12-6. PubMed ID: 6252186 [TBL] [Abstract][Full Text] [Related]
4. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Patel DK; Archana G; Kumar GN Curr Microbiol; 2008 Feb; 56(2):168-74. PubMed ID: 17965911 [TBL] [Abstract][Full Text] [Related]
5. Succinate irrepressible periplasmic glucose dehydrogenase of Rhizobium sp. Td3 and SN1 contributes to its phosphate solubilization ability. Iyer B; Rajkumar S Arch Microbiol; 2019 Jul; 201(5):649-659. PubMed ID: 30783703 [TBL] [Abstract][Full Text] [Related]
6. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
7. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Xiao H; Gu Y; Ning Y; Yang Y; Mitchell WJ; Jiang W; Yang S Appl Environ Microbiol; 2011 Nov; 77(22):7886-95. PubMed ID: 21926197 [TBL] [Abstract][Full Text] [Related]
8. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli. Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743 [TBL] [Abstract][Full Text] [Related]
9. Agrobacterium radiobacter and related organisms take up fructose via a binding-protein-dependent active-transport system. Williams SG; Greenwood JA; Jones CW Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2601-10. PubMed ID: 7582021 [TBL] [Abstract][Full Text] [Related]
10. Novel substrate specificity of D-arabinose isomerase from Klebsiella pneumoniae and its application to production of D-altrose from D-psicose. Menavuvu BT; Poonperm W; Takeda K; Morimoto K; Granström TB; Takada G; Izumori K J Biosci Bioeng; 2006 Nov; 102(5):436-41. PubMed ID: 17189171 [TBL] [Abstract][Full Text] [Related]
11. Using phosphoglucose isomerase-deficient (pgi1Δ) Saccharomyces cerevisiae to map the impact of sugar phosphate levels on D-glucose and D-xylose sensing. Borgström C; Persson VC; Rogova O; Osiro KO; Lundberg E; Spégel P; Gorwa-Grauslund M Microb Cell Fact; 2022 Dec; 21(1):253. PubMed ID: 36456947 [TBL] [Abstract][Full Text] [Related]
12. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. Moon MW; Kim HJ; Oh TK; Shin CS; Lee JS; Kim SJ; Lee JK FEMS Microbiol Lett; 2005 Mar; 244(2):259-66. PubMed ID: 15766777 [TBL] [Abstract][Full Text] [Related]
13. Organic acid mediated repression of sugar utilization in rhizobia. Iyer B; Rajput MS; Jog R; Joshi E; Bharwad K; Rajkumar S Microbiol Res; 2016 Nov; 192():211-220. PubMed ID: 27664739 [TBL] [Abstract][Full Text] [Related]
15. Role of catabolite regulatory mechanisms in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis. Mountfort DO; Asher RA Appl Environ Microbiol; 1983 Dec; 46(6):1331-8. PubMed ID: 6660873 [TBL] [Abstract][Full Text] [Related]
16. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Ryu S; Trinh CT Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499 [TBL] [Abstract][Full Text] [Related]
17. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli. Choudhury D; Saini S Lett Appl Microbiol; 2018 Feb; 66(2):132-137. PubMed ID: 29140539 [TBL] [Abstract][Full Text] [Related]
18. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius. Lee BD; Apel WA; DeVeaux LC; Sheridan PP J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1443-1458. PubMed ID: 28776272 [TBL] [Abstract][Full Text] [Related]
19. Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli. Koirala S; Wang X; Rao CV J Bacteriol; 2016 Feb; 198(3):386-93. PubMed ID: 26527647 [TBL] [Abstract][Full Text] [Related]
20. Enzymes related to fructose utilization in Pseudomonas cepacia. Allenza P; Lee YN; Lessie TG J Bacteriol; 1982 Jun; 150(3):1348-56. PubMed ID: 6281243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]