BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35662456)

  • 21. Specific empirical free energy function for automated docking of carbohydrates to proteins.
    Laederach A; Reilly PJ
    J Comput Chem; 2003 Nov; 24(14):1748-57. PubMed ID: 12964193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CSM-carbohydrate: protein-carbohydrate binding affinity prediction and docking scoring function.
    Nguyen TB; Pires DEV; Ascher DB
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34882232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TMH Stab-pred: Predicting the stability of α-helical membrane proteins using sequence and structural features.
    Ramakrishna Reddy P; Kulandaisamy A; Michael Gromiha M
    Methods; 2023 Oct; 218():118-124. PubMed ID: 37572768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating the novel-binding site of RPA2 on Menin and predicting the effect of point mutation of Menin through protein-protein interactions.
    Kaur G; Prajapat M; Singh H; Sarma P; Bhadada SK; Shekhar N; Sharma S; Sinha S; Kumar S; Prakash A; Medhi B
    Sci Rep; 2023 Jun; 13(1):9337. PubMed ID: 37291166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large scale analysis of protein stability in OMIM disease related human protein variants.
    Martelli PL; Fariselli P; Savojardo C; Babbi G; Aggazio F; Casadio R
    BMC Genomics; 2016 Jun; 17 Suppl 2(Suppl 2):397. PubMed ID: 27356511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and analysis of binding site residues in protein-carbohydrate complexes using energy based approach.
    Gromiha MM; Veluraja K; Fukui K
    Protein Pept Lett; 2014; 21(8):799-807. PubMed ID: 23971886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blind tests of RNA-protein binding affinity prediction.
    Kappel K; Jarmoskaite I; Vaidyanathan PP; Greenleaf WJ; Herschlag D; Das R
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8336-8341. PubMed ID: 30962376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network.
    Malik A; Ahmad S
    BMC Struct Biol; 2007 Jan; 7():1. PubMed ID: 17201922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Four-body atomic potential for modeling protein-ligand binding affinity: application to enzyme-inhibitor binding energy prediction.
    Masso M
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S1. PubMed ID: 24564918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes.
    Gohlke H; Kiel C; Case DA
    J Mol Biol; 2003 Jul; 330(4):891-913. PubMed ID: 12850155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PremPDI estimates and interprets the effects of missense mutations on protein-DNA interactions.
    Zhang N; Chen Y; Zhao F; Yang Q; Simonetti FL; Li M
    PLoS Comput Biol; 2018 Dec; 14(12):e1006615. PubMed ID: 30533007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of change in protein unfolding rates upon point mutations in two state proteins.
    Chaudhary P; Naganathan AN; Gromiha MM
    Biochim Biophys Acta; 2016 Sep; 1864(9):1104-1109. PubMed ID: 27264959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PremPRI: Predicting the Effects of Missense Mutations on Protein-RNA Interactions.
    Zhang N; Lu H; Chen Y; Zhu Z; Yang Q; Wang S; Li M
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32756481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Average assignment method for predicting the stability of protein mutants.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Biopolymers; 2006 May; 82(1):80-92. PubMed ID: 16453276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AB-Bind: Antibody binding mutational database for computational affinity predictions.
    Sirin S; Apgar JR; Bennett EM; Keating AE
    Protein Sci; 2016 Feb; 25(2):393-409. PubMed ID: 26473627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Comput Biol Chem; 2005 Feb; 29(1):25-35. PubMed ID: 15680583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Folding RaCe: a robust method for predicting changes in protein folding rates upon point mutations.
    Chaudhary P; Naganathan AN; Gromiha MM
    Bioinformatics; 2015 Jul; 31(13):2091-7. PubMed ID: 25686635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of substitutions in the binding surface of an antibody on antigen affinity.
    Dougan DA; Malby RL; Gruen LC; Kortt AA; Hudson PJ
    Protein Eng; 1998 Jan; 11(1):65-74. PubMed ID: 9579662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing.
    Kowalsky CA; Whitehead TA
    Proteins; 2016 Dec; 84(12):1914-1928. PubMed ID: 27699856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.