These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35662456)

  • 41. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.
    Petukh M; Dai L; Alexov E
    Int J Mol Sci; 2016 Apr; 17(4):547. PubMed ID: 27077847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural analysis and prediction of protein mutant stability using distance and torsion potentials: role of secondary structure and solvent accessibility.
    Parthiban V; Gromiha MM; Hoppe C; Schomburg D
    Proteins; 2007 Jan; 66(1):41-52. PubMed ID: 17068801
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantifying protein microstructure and electrostatic effects on the change in Gibbs free energy of binding in immobilized metal affinity chromatography.
    Pathange LP; Bevan DR; Zhang C
    Anal Chem; 2008 Mar; 80(5):1628-40. PubMed ID: 18229947
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase.
    Sharabi O; Peleg Y; Mashiach E; Vardy E; Ashani Y; Silman I; Sussman JL; Shifman JM
    Protein Eng Des Sel; 2009 Oct; 22(10):641-8. PubMed ID: 19643977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dissection of binding interactions in the complex between the anti-lysozyme antibody HyHEL-63 and its antigen.
    Li Y; Urrutia M; Smith-Gill SJ; Mariuzza RA
    Biochemistry; 2003 Jan; 42(1):11-22. PubMed ID: 12515535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure.
    Capriotti E; Fariselli P; Casadio R
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W306-10. PubMed ID: 15980478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Empirical estimation of the energetic contribution of individual interface residues in structures of protein-protein complexes.
    Guharoy M; Chakrabarti P
    J Comput Aided Mol Des; 2009 Sep; 23(9):645-54. PubMed ID: 19479323
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploring the interplay between experimental methods and the performance of predictors of binding affinity change upon mutations in protein complexes.
    Geng C; Vangone A; Bonvin AMJJ
    Protein Eng Des Sel; 2016 Aug; 29(8):291-299. PubMed ID: 27284087
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes.
    Jain T; Jayaram B
    FEBS Lett; 2005 Dec; 579(29):6659-66. PubMed ID: 16307743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of key amino acid residues in the assembly of enzymes into the pyruvate dehydrogenase complex of Bacillus stearothermophilus: a kinetic and thermodynamic analysis.
    Jung HI; Cooper A; Perham RN
    Biochemistry; 2002 Aug; 41(33):10446-53. PubMed ID: 12173931
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure-based protocol for identifying mutations that enhance protein-protein binding affinities.
    Sammond DW; Eletr ZM; Purbeck C; Kimple RJ; Siderovski DP; Kuhlman B
    J Mol Biol; 2007 Aug; 371(5):1392-404. PubMed ID: 17603074
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequence-Based Prediction of Protein-Carbohydrate Binding Sites Using Support Vector Machines.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    J Chem Inf Model; 2016 Oct; 56(10):2115-2122. PubMed ID: 27623166
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple functions of aromatic-carbohydrate interactions in a processive cellulase examined with molecular simulation.
    Payne CM; Bomble YJ; Taylor CB; McCabe C; Himmel ME; Crowley MF; Beckham GT
    J Biol Chem; 2011 Nov; 286(47):41028-35. PubMed ID: 21965672
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DeePNAP: A Deep Learning Method to Predict Protein-Nucleic Acid Binding Affinity from Their Sequences.
    Pandey U; Behara SM; Sharma S; Patil RS; Nambiar S; Koner D; Bhukya H
    J Chem Inf Model; 2024 Mar; 64(6):1806-1815. PubMed ID: 38458968
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inferring the microscopic surface energy of protein-protein interfaces from mutation data.
    Moal IH; Dapkūnas J; Fernández-Recio J
    Proteins; 2015 Apr; 83(4):640-50. PubMed ID: 25586563
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protein-protein binding affinity prediction from amino acid sequence.
    Yugandhar K; Gromiha MM
    Bioinformatics; 2014 Dec; 30(24):3583-9. PubMed ID: 25172924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability-Large-Scale Validation of MD-Based Relative Free Energy Calculations.
    Steinbrecher T; Zhu C; Wang L; Abel R; Negron C; Pearlman D; Feyfant E; Duan J; Sherman W
    J Mol Biol; 2017 Apr; 429(7):948-963. PubMed ID: 27964946
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reliable prediction of protein thermostability change upon double mutation from amino acid sequence.
    Huang LT; Gromiha MM
    Bioinformatics; 2009 Sep; 25(17):2181-7. PubMed ID: 19535532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A detailed thermodynamic analysis of ras/effector complex interfaces.
    Kiel C; Serrano L; Herrmann C
    J Mol Biol; 2004 Jul; 340(5):1039-58. PubMed ID: 15236966
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.
    Srinivasulu YS; Wang JR; Hsu KT; Tsai MJ; Charoenkwan P; Huang WL; Huang HL; Ho SY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S14. PubMed ID: 26681483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.