These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35662458)

  • 1. GWYRE: A Resource for Mapping Variants onto Experimental and Modeled Structures of Human Protein Complexes.
    Malladi S; Powell HR; David A; Islam SA; Copeland MM; Kundrotas PJ; Sternberg MJE; Vakser IA
    J Mol Biol; 2022 Jun; 434(11):167608. PubMed ID: 35662458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural templates for comparative protein docking.
    Anishchenko I; Kundrotas PJ; Tuzikov AV; Vakser IA
    Proteins; 2015 Sep; 83(9):1563-70. PubMed ID: 25488330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GWIDD: a comprehensive resource for genome-wide structural modeling of protein-protein interactions.
    Kundrotas PJ; Zhu Z; Vakser IA
    Hum Genomics; 2012 Jul; 6(1):7. PubMed ID: 23245398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural modeling of protein complexes: Current capabilities and challenges.
    Dapkūnas J; Olechnovič K; Venclovas Č
    Proteins; 2019 Dec; 87(12):1222-1232. PubMed ID: 31294859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural quality of unrefined models in protein docking.
    Anishchenko I; Kundrotas PJ; Vakser IA
    Proteins; 2017 Jan; 85(1):39-45. PubMed ID: 27756103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling complexes of modeled proteins.
    Anishchenko I; Kundrotas PJ; Vakser IA
    Proteins; 2017 Mar; 85(3):470-478. PubMed ID: 27701777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking.
    Chakravarty D; McElfresh GW; Kundrotas PJ; Vakser IA
    Proteins; 2020 Aug; 88(8):1070-1081. PubMed ID: 31994759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.
    Yan Y; Wen Z; Wang X; Huang SY
    Proteins; 2017 Mar; 85(3):497-512. PubMed ID: 28026062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of docking methodologies to modeled proteins.
    Singh A; Dauzhenka T; Kundrotas PJ; Sternberg MJE; Vakser IA
    Proteins; 2020 Sep; 88(9):1180-1188. PubMed ID: 32170770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What method to use for protein-protein docking?
    Porter KA; Desta I; Kozakov D; Vajda S
    Curr Opin Struct Biol; 2019 Apr; 55():1-7. PubMed ID: 30711743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved performance in CAPRI round 37 using LZerD docking and template-based modeling with combined scoring functions.
    Peterson LX; Shin WH; Kim H; Kihara D
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):311-320. PubMed ID: 28845596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A benchmark testing ground for integrating homology modeling and protein docking.
    Bohnuud T; Luo L; Wodak SJ; Bonvin AM; Weng Z; Vajda S; Schueler-Furman O; Kozakov D
    Proteins; 2017 Jan; 85(1):10-16. PubMed ID: 27172383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global and local structural similarity in protein-protein complexes: implications for template-based docking.
    Kundrotas PJ; Vakser IA
    Proteins; 2013 Dec; 81(12):2137-42. PubMed ID: 23946125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene ontology improves template selection in comparative protein docking.
    Hadarovich A; Anishchenko I; Tuzikov AV; Kundrotas PJ; Vakser IA
    Proteins; 2019 Mar; 87(3):245-253. PubMed ID: 30520123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures.
    Maheshwari S; Brylinski M
    BMC Struct Biol; 2015 Nov; 15():23. PubMed ID: 26597230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational framework for modeling functional protein-protein interactions.
    Pal A; Pal D; Mitra P
    Proteins; 2021 Oct; 89(10):1353-1364. PubMed ID: 34076296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of protein-protein binding sites in high-throughput template-based modeling.
    Kundrotas PJ; Vakser IA
    PLoS Comput Biol; 2010 Apr; 6(4):e1000727. PubMed ID: 20369011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pushing structural information into the yeast interactome by high-throughput protein docking experiments.
    Mosca R; Pons C; Fernández-Recio J; Aloy P
    PLoS Comput Biol; 2009 Aug; 5(8):e1000490. PubMed ID: 19714207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the assembly order of multimeric heteroprotein complexes.
    Peterson LX; Togawa Y; Esquivel-Rodriguez J; Terashi G; Christoffer C; Roy A; Shin WH; Kihara D
    PLoS Comput Biol; 2018 Jan; 14(1):e1005937. PubMed ID: 29329283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein docking using case-based reasoning.
    Ghoorah AW; Devignes MD; Smaïl-Tabbone M; Ritchie DW
    Proteins; 2013 Dec; 81(12):2150-8. PubMed ID: 24123156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.