These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35662517)

  • 1. Real-time time-optimal continuous multi-axis trajectory planning using the trajectory index coordination method.
    He S; Hu C; Lin S; Zhu Y; Tomizuka M
    ISA Trans; 2022 Dec; 131():639-649. PubMed ID: 35662517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization based trajectory planning for real-time 6DoF robotic patient motion compensation systems.
    Liu X; Wiersma RD
    PLoS One; 2019; 14(1):e0210385. PubMed ID: 30633766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Optimal Trajectory Planning and Tracking for Autonomous Vehicles.
    Li JT; Chen CK; Ren H
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computationally efficient and sub-optimal trajectory planning framework based on trajectory-quality growth rate analysis.
    Takemura R; Ishigami G
    Front Robot AI; 2022; 9():994437. PubMed ID: 36388252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Optimized Trajectory Planner and Motion Controller Framework for Autonomous Driving in Unstructured Environments.
    Xiong L; Fu Z; Zeng D; Leng B
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34199118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Trajectory Planning Method for Autonomous Valet Parking via Solving an Optimal Control Problem.
    Chen C; Wu B; Xuan L; Chen J; Wang T; Qian L
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33187151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bernstein Polynomial-Based Method for Solving Optimal Trajectory Generation Problems.
    Kielas-Jensen C; Cichella V; Berry T; Kaminer I; Walton C; Pascoal A
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-optimal trajectory planning based on event-trigger and conditional proportional control.
    Chen G; Wei N; Yan L; Lu H; Li J
    PLoS One; 2023; 18(1):e0273640. PubMed ID: 36716304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A PSO-enhanced Gauss pseudospectral method to solve trajectory planning for autonomous underwater vehicles.
    Gan W; Su L; Chu Z
    Math Biosci Eng; 2023 May; 20(7):11713-11731. PubMed ID: 37501417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time multi-quadrotor trajectory generation via distributed receding architecture and hierarchical planning in complex environments.
    Long T; Cao Y; Xu G; Meng Z; Sun J; Wang Z
    ISA Trans; 2023 May; 136():715-726. PubMed ID: 36503616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatio-Temporal Joint Optimization-Based Trajectory Planning Method for Autonomous Vehicles in Complex Urban Environments.
    Guo J; Xie Z; Liu M; Dai Z; Jiang Y; Guo J; Xie D
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time and energy optimal trajectory generation for coverage motion in industrial machines.
    Halinga MS; Nshama EW; Schäfle TR; Uchiyama N
    ISA Trans; 2023 Jul; 138():735-745. PubMed ID: 36966058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory.
    Wada Y; Kaneko Y; Nakano E; Osu R; Kawato M
    Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trajectory Planning of Autonomous Underwater Vehicles Based on Gauss Pseudospectral Method.
    Gan W; Su L; Chu Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creating Better Collision-Free Trajectory for Robot Motion Planning by Linearly Constrained Quadratic Programming.
    Liu Y; Zha F; Li M; Guo W; Jia Y; Wang P; Zang Y; Sun L
    Front Neurorobot; 2021; 15():724116. PubMed ID: 34434099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trajectory planning and tracking control of a ground mobile robot:A reconstruction approach towards space vehicle.
    Gu W; Cai S; Hu Y; Zhang H; Chen H
    ISA Trans; 2019 Apr; 87():116-128. PubMed ID: 30503272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Optimization-Based Motion Planner for Car-like Logistics Robots on Narrow Roads.
    Yu L; Wu H; Liu C; Jiao H
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guidance, Navigation and Control for Autonomous Quadrotor Flight in an Agricultural Field: The Case of Vineyards.
    Mokrane A; Benallegue A; Choukchou-Braham A; El Hadri A; Cherki B
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective and Safe Trajectory Planning for an Autonomous UAV Using a Decomposition-Coordination Method.
    Nizar I; Jaafar A; Hidila Z; Barki M; Illoussamen EH; Mestari M
    J Intell Robot Syst; 2021; 103(3):50. PubMed ID: 34720405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Non-Flat Terrain Biped Gait Planner Based on DIRCON.
    Chen B; Zang X; Zhang Y; Gao L; Zhu Y; Zhao J
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.