These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3566277)

  • 1. The metabolism of deoxyguanosine in mitochondria: relationship of the uptake of deoxyguanosine to the electron transport chain and adenosine triphosphate.
    Watkins LF; Lewis RA
    Arch Biochem Biophys; 1987 Mar; 253(2):315-21. PubMed ID: 3566277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metabolism of deoxyguanosine in mitochondria: a characterization of the phosphorylation process which occurs in intact mitochondria.
    Watkins LF; Lewis RA
    Biochim Biophys Acta; 1987 Jan; 923(1):103-8. PubMed ID: 3801514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of deoxyguanosine in intact and fractured mitochondria.
    Watkins LF; Lewis RA
    Mol Cell Biochem; 1987 Oct; 77(2):153-60. PubMed ID: 2830481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-independent protection of the oxidative phosphorylation capacity of mitochondria against anoxic damage by ATP and its non-metabolizable analogs.
    Watanabe F; Hashimoto T; Tagawa K
    J Biochem; 1985 Apr; 97(4):1229-34. PubMed ID: 4030721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier mediated uptake of deoxyguanosine in rat liver mitochondria.
    Watkins L; Lewis RA
    Adv Exp Med Biol; 1986; 195 Pt B():85-8. PubMed ID: 3766249
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of thiophosphate analogues of ATP and ADP on the ATP-synthetase reaction of oxidative phosphorylation.
    Lüstorff J; Schlimme E; Eckstein F; Lamprecht W
    Hoppe Seylers Z Physiol Chem; 1974 Nov; 355(11):1400-4. PubMed ID: 4376791
    [No Abstract]   [Full Text] [Related]  

  • 7. Participation of epsilonADP and epsilonATp in the reactions of oxidative phosphorylation in rat liver mitochondria.
    Bârzu O; Kiss L; Bojan O; Niac G; Mantsch HH
    Biochem Biophys Res Commun; 1976 Dec; 73(4):894-902. PubMed ID: 15625859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the energetic state of mitochondria on the inhibition of oxidative phosphorylation by N-ethylmaleimide.
    Le Quoc K; Le Quoc D; Gaudemer Y
    Biochim Biophys Acta; 1979 May; 546(2):356-64. PubMed ID: 444501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the coupling between the transport of phosphate and adenine nucleotides in rat liver mitochondria.
    McGivan JD; Grebe K; Klingenberg M
    Biochem Biophys Res Commun; 1971 Dec; 45(6):1533-41. PubMed ID: 5128194
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition study of ADP,ATP transport in mitochondria with trinitrophenyl-modified substrates.
    Schlimme E; Boos KS; Onur G; Ponse G
    FEBS Lett; 1983 May; 155(1):6-10. PubMed ID: 6301884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol.
    Rigoulet M; Devin A; Avéret N; Vandais B; Guérin B
    Eur J Biochem; 1996 Oct; 241(1):280-5. PubMed ID: 8898917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative membrane transport pathway for phosphate and adenine nucleotides in mitochondria and its possible function.
    Reynafarje B; Lehninger AL
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):4788-92. PubMed ID: 283393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High phosphate requirement for oxidative phosphorylation and low affinity for phosphate transport in newborn rat liver mitochondria.
    Baggetto L; Comte J; Meister R; Godinot C
    Biochimie; 1983; 65(11-12):685-90. PubMed ID: 6673745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H+/site, charge/site, and ATP/site ratios at coupling sites I and II in mitochondrial e- transport.
    Pozzan T; Miconi V; Di Virgilio F; Azzone GF
    J Biol Chem; 1979 Oct; 254(20):12000-5. PubMed ID: 39939
    [No Abstract]   [Full Text] [Related]  

  • 15. Free--SH variations during ATP synthesis by oxidative phosphorylation in heart muscle mitochondria.
    Sabadie-Pialoux N; Gautheron D
    Biochim Biophys Acta; 1971 Apr; 234(1):9-15. PubMed ID: 5560366
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence for a P2-purinoceptor mediating vasoconstriction by UTP, ATP and related nucleotides in the isolated pulmonary vascular bed of the rat.
    Rubino A; Burnstock G
    Br J Pharmacol; 1996 Jul; 118(6):1415-20. PubMed ID: 8832066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of the longitudinal muscle and the muscularis mucosae of the rat duodenum to adenine and uracil nucleotides.
    Johnson CR; Charlton SJ; Hourani SM
    Br J Pharmacol; 1996 Mar; 117(5):823-30. PubMed ID: 8851497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanism of non-phosphorylative effects of ADP on mitochondrial functions].
    Panov AV; Filippova SN; Liakhovich II
    Biokhimiia; 1979 Oct; 44(10):1738-46. PubMed ID: 508851
    [No Abstract]   [Full Text] [Related]  

  • 19. The metabolism of deoxyguanosine in mitochondria. Characterization of the uptake process.
    Watkins LF; Lewis RA
    Mol Cell Biochem; 1987 Sep; 77(1):71-7. PubMed ID: 3696164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of N1-oxide derivatives of adenine nucleotides in the reactions of the oxidative phosphorylation.
    Kezdi M; Mantsch H; Mureşan L; Tărmure C; Bărzu O
    FEBS Lett; 1973 Jun; 33(1):33-6. PubMed ID: 4269156
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.