These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35663012)

  • 1. Experimental evolution of
    Nordgaard M; Blake C; Maróti G; Hu G; Wang Y; Strube ML; Kovács ÁT
    iScience; 2022 Jun; 25(6):104406. PubMed ID: 35663012
    [No Abstract]   [Full Text] [Related]  

  • 2. Adaptive laboratory evolution reveals regulators involved in repressing biofilm development as key players in
    Pomerleau M; Charron-Lamoureux V; Léonard L; Grenier F; Rodrigue S; Beauregard PB
    mSystems; 2024 Feb; 9(2):e0084323. PubMed ID: 38206029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversification of Bacillus subtilis during experimental evolution on Arabidopsis thaliana and the complementarity in root colonization of evolved subpopulations.
    Blake C; Nordgaard M; Maróti G; Kovács ÁT
    Environ Microbiol; 2021 Oct; 23(10):6122-6136. PubMed ID: 34296794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors.
    Allard-Massicotte R; Tessier L; Lécuyer F; Lakshmanan V; Lucier JF; Garneau D; Caudwell L; Vlamakis H; Bais HP; Beauregard PB
    mBio; 2016 Nov; 7(6):. PubMed ID: 27899502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial Community Members Increase
    Eckshtain-Levi N; Harris SL; Roscios RQ; Shank EA
    Phytobiomes J; 2020; 4(4):303-313. PubMed ID: 34661038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of Bacillus thuringiensis to Plant Colonization Affects Differentiation and Toxicity.
    Lin Y; Alstrup M; Pang JKY; Maróti G; Er-Rafik M; Tourasse N; Økstad OA; Kovács ÁT
    mSystems; 2021 Oct; 6(5):e0086421. PubMed ID: 34636664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Traits Involved in Colonization of Arabidopsis thaliana Roots by Bacillus amyloliquefaciens FZB42.
    Dietel K; Beator B; Budiharjo A; Fan B; Borriss R
    Plant Pathol J; 2013 Mar; 29(1):59-66. PubMed ID: 25288929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel genetic adaptation of
    Hu G; Wang Y; Blake C; Nordgaard M; Liu X; Wang B; Kovács ÁT
    Microb Genom; 2023 Jul; 9(7):. PubMed ID: 37466402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production.
    Bais HP; Fall R; Vivanco JM
    Plant Physiol; 2004 Jan; 134(1):307-19. PubMed ID: 14684838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors other than root secreted malic acid that contributes toward Bacillus subtilis FB17 colonization on Arabidopsis roots.
    Lakshmanan V; Bais HP
    Plant Signal Behav; 2013 Nov; 8(11):e27277. PubMed ID: 24310121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis thaliana Root Surface Chemistry Regulates in Planta Biofilm Formation of Bacillus subtilis.
    Rudrappa T; Bais HP
    Plant Signal Behav; 2007 Sep; 2(5):349-50. PubMed ID: 19704655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots.
    Rudrappa T; Quinn WJ; Stanley-Wall NR; Bais HP
    Planta; 2007 Jul; 226(2):283-97. PubMed ID: 17554552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sucrose triggers a novel signaling cascade promoting Bacillus subtilis rhizosphere colonization.
    Tian T; Sun B; Shi H; Gao T; He Y; Li Y; Liu Y; Li X; Zhang L; Li S; Wang Q; Chai Y
    ISME J; 2021 Sep; 15(9):2723-2737. PubMed ID: 33772107
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Charron-Lamoureux V; Beauregard PB
    Mol Plant Microbe Interact; 2019 Sep; 32(9):1188-1195. PubMed ID: 30939072
    [No Abstract]   [Full Text] [Related]  

  • 15. Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux.
    Lakshmanan V; Castaneda R; Rudrappa T; Bais HP
    Planta; 2013 Oct; 238(4):657-68. PubMed ID: 23794026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates.
    Zhang N; Yang D; Wang D; Miao Y; Shao J; Zhou X; Xu Z; Li Q; Feng H; Li S; Shen Q; Zhang R
    BMC Genomics; 2015 Sep; 16(1):685. PubMed ID: 26346121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Transcriptomics of
    Yi Y; de Jong A; Frenzel E; Kuipers OP
    Front Microbiol; 2017; 8():1487. PubMed ID: 28824604
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Xu Z; Zhang H; Sun X; Liu Y; Yan W; Xun W; Shen Q; Zhang R
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30552189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring Bacterial Colonization and Maintenance on Arabidopsis thaliana Roots in a Floating Hydroponic System.
    Harris SL; Pelaez CA; Shank EA
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The plant beneficial rhizobacterium Achromobacter sp. 5B1 influences root development through auxin signaling and redistribution.
    Jiménez-Vázquez KR; García-Cárdenas E; Barrera-Ortiz S; Ortiz-Castro R; Ruiz-Herrera LF; Ramos-Acosta BP; Coria-Arellano JL; Sáenz-Mata J; López-Bucio J
    Plant J; 2020 Aug; 103(5):1639-1654. PubMed ID: 32445404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.