These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35663404)

  • 1. Effective Force Generation During Mammalian Cell Migration Under Different Molecular and Physical Mechanisms.
    Yao L; Li Y
    Front Cell Dev Biol; 2022; 10():903234. PubMed ID: 35663404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from Actin-Driven to Water-Driven Cell Migration Depends on External Hydraulic Resistance.
    Li Y; Sun SX
    Biophys J; 2018 Jun; 114(12):2965-2973. PubMed ID: 29925032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the energy efficiency of cell migration in diverse physical environments.
    Li Y; Yao L; Mori Y; Sun SX
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):23894-23900. PubMed ID: 31719206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling actin flow, adhesion, and morphology in a computational cell motility model.
    Shao D; Levine H; Rappel WJ
    Proc Natl Acad Sci U S A; 2012 May; 109(18):6851-6. PubMed ID: 22493219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and mechanosensory function of focal adhesions: experiments and models.
    Bershadsky AD; Ballestrem C; Carramusa L; Zilberman Y; Gilquin B; Khochbin S; Alexandrova AY; Verkhovsky AB; Shemesh T; Kozlov MM
    Eur J Cell Biol; 2006 Apr; 85(3-4):165-73. PubMed ID: 16360240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism for direct actin force-sensing by α-catenin.
    Mei L; Espinosa de Los Reyes S; Reynolds MJ; Leicher R; Liu S; Alushin GM
    Elife; 2020 Sep; 9():. PubMed ID: 32969337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical coupling of cytoskeletal elasticity and force generation is crucial for understanding the migrating nature of keloid fibroblasts.
    Harn HI; Wang YK; Hsu CK; Ho YT; Huang YW; Chiu WT; Lin HH; Cheng CM; Tang MJ
    Exp Dermatol; 2015 Aug; 24(8):579-84. PubMed ID: 25877039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force transmission in migrating cells.
    Fournier MF; Sauser R; Ambrosi D; Meister JJ; Verkhovsky AB
    J Cell Biol; 2010 Jan; 188(2):287-97. PubMed ID: 20100912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The key feature for early migratory processes: Dependence of adhesion, actin bundles, force generation and transmission on filopodia.
    Schäfer C; Born S; Möhl C; Houben S; Kirchgessner N; Merkel R; Hoffmann B
    Cell Adh Migr; 2010; 4(2):215-25. PubMed ID: 20179423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force generation by endocytic actin patches in budding yeast.
    Carlsson AE; Bayly PV
    Biophys J; 2014 Apr; 106(8):1596-606. PubMed ID: 24739159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic coupling between actin network flow and turnover revealed by flow mapping in the lamella of crawling fragments.
    Okeyo KO; Adachi T; Hojo M
    Biochem Biophys Res Commun; 2009 Dec; 390(3):797-802. PubMed ID: 19836353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular transport modulates the adaptive response of branched actin networks to an external force.
    Hu L; Papoian GA
    J Phys Chem B; 2013 Oct; 117(42):13388-96. PubMed ID: 23962335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling actin polymerization: the effect on confined cell migration.
    Hervas-Raluy S; Garcia-Aznar JM; Gomez-Benito MJ
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1177-1187. PubMed ID: 30843134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms underlying the force-dependent regulation of actin-to-ECM linkage at the focal adhesions.
    Hirata H; Sokabe M; Lim CT
    Prog Mol Biol Transl Sci; 2014; 126():135-54. PubMed ID: 25081617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single cell active force generation under dynamic loading - Part I: AFM experiments.
    Weafer PP; Reynolds NH; Jarvis SP; McGarry JP
    Acta Biomater; 2015 Nov; 27():236-250. PubMed ID: 26360596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.
    Pathak A
    Phys Biol; 2018 Jun; 15(6):065001. PubMed ID: 29648543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell Mechanics at the Rear Act to Steer the Direction of Cell Migration.
    Allen GM; Lee KC; Barnhart EL; Tsuchida MA; Wilson CA; Gutierrez E; Groisman A; Theriot JA; Mogilner A
    Cell Syst; 2020 Sep; 11(3):286-299.e4. PubMed ID: 32916096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial distribution of filament elasticity determines the migratory behaviors of a cell.
    Harn HI; Hsu CK; Wang YK; Huang YW; Chiu WT; Lin HH; Cheng CM; Tang MJ
    Cell Adh Migr; 2016 Jul; 10(4):368-77. PubMed ID: 26919488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insights into actin force generation during vesicle formation from cryo-electron tomography.
    Serwas D; Akamatsu M; Moayed A; Vegesna K; Vasan R; Hill JM; Schöneberg J; Davies KM; Rangamani P; Drubin DG
    Dev Cell; 2022 May; 57(9):1132-1145.e5. PubMed ID: 35504288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.
    Nikmaneshi MR; Firoozabadi B; Saidi MS
    J Biomech; 2018 Jan; 67():37-45. PubMed ID: 29217089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.