These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35663619)

  • 1. Design of a Super Twisting Sliding Mode Controller for an MR Damper-Based Semi-Active Prosthetic Knee.
    Assfaw D; Seid S
    Front Robot AI; 2022; 9():870018. PubMed ID: 35663619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swing Phase Control of Semi-Active Prosthetic Knee Using Neural Network Predictive Control With Particle Swarm Optimization.
    Ekkachai K; Nilkhamhang I
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1169-1178. PubMed ID: 26829798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epilepsy control using a fixed time integral super twisting sliding mode control for Pinsky-Rinzel pyramidal model through ion channels with optogenetic method.
    Rezvani-Ardakani S; Mohammad-Ali-Nezhad S; Ghasemi R
    Comput Methods Programs Biomed; 2020 Oct; 195():105665. PubMed ID: 32736006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot study of the microprocessor-controlled prosthetic knee with a novel hydraulic damper.
    Zhang Y; Cao W; Yu H; Meng Q; Chen W
    Technol Health Care; 2020; 28(1):93-97. PubMed ID: 31476188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement Q-Learning Control With Reward Shaping Function for Swing Phase Control in a Semi-active Prosthetic Knee.
    Hutabarat Y; Ekkachai K; Hayashibe M; Kongprawechnon W
    Front Neurorobot; 2020; 14():565702. PubMed ID: 33324190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Output feedback-based adaptive fuzzy sliding mode control for seismic response reduction of base-isolated buildings.
    Rahmani B; Ziaiefar A; Hashemi S
    ISA Trans; 2022 Jul; 126():94-108. PubMed ID: 34340835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disturbance observer-based prescribed performance super-twisting sliding mode control for autonomous surface vessels.
    Zhang C; Yu S
    ISA Trans; 2023 Apr; 135():13-22. PubMed ID: 36210189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for IPMSM.
    Wu S; Zhang J; Chai B
    ISA Trans; 2019 Sep; 92():155-165. PubMed ID: 31056215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research of the training methods and structure design of intelligent knee prosthesis based on physiological gait].
    Cao W; Wei X; Zhao W; Meng Q; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Oct; 35(5):733-739. PubMed ID: 30370712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascaded adaptive integral backstepping sliding mode and super-twisting controller for twin rotor system using bond graph model.
    Srinivasarao G; Samantaray AK; Ghoshal SK
    ISA Trans; 2022 Nov; 130():516-532. PubMed ID: 35428478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal adaptive barrier-function super-twisting nonlinear global sliding mode scheme for trajectory tracking of parallel robots.
    Barghandan M; Pirmohamadi AA; Mobayen S; Fekih A
    Heliyon; 2023 Feb; 9(2):e13378. PubMed ID: 36846694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-free robust adaptive integral sliding mode impedance control of knee-ankle-toe active transfemoral prosthesis.
    Wu Z; Chen Y; Geng Y; Wang X; Xuan B
    Int J Med Robot; 2022 Jun; 18(3):e2378. PubMed ID: 35133713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological parameters analysis of transfemoral amputees with different prosthetic knees.
    Li S; Cao W; Yu H; Meng Q; Chen W
    Acta Bioeng Biomech; 2019; 21(3):135-142. PubMed ID: 31798017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
    Pérez-San Lázaro R; Salgado I; Chairez I
    ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and analysis of adaptive Super-Twisting sliding mode control for a microgyroscope.
    Feng Z; Fei J
    PLoS One; 2018; 13(1):e0189457. PubMed ID: 29298297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical responses of young adults with unilateral transfemoral amputation using two types of mechanical stance control prosthetic knee joints.
    Andrysek J; García D; Rozbaczylo C; Alvarez-Mitchell C; Valdebenito R; Rotter K; Wright FV
    Prosthet Orthot Int; 2020 Oct; 44(5):314-322. PubMed ID: 32389076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding mode control for offshore parallel antenna platform with large orientation workspace.
    He Y; Wu Y; Li W
    ISA Trans; 2022 Sep; 128(Pt B):90-108. PubMed ID: 34952688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Control Method for Transfemoral Prosthetic Knees Based on Thigh Angular Motion
    Inoue K; Fukuda T; Wada T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6644-6647. PubMed ID: 31947365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.