These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35663762)

  • 1. The effect of electron dose on positive polymethyl methacrylate resist for nanolithography of gold bowtie nanoantennas.
    Campbell C; Casey A; Triplett G
    Heliyon; 2022 May; 8(5):e09475. PubMed ID: 35663762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable nanoantennas using electron-beam manipulation.
    Roxworthy BJ; Bhuiya AM; Yu X; Chow EK; Toussaint KC
    Nat Commun; 2014 Jul; 5():4427. PubMed ID: 25020189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering.
    Zhan P; Wen T; Wang ZG; He Y; Shi J; Wang T; Liu X; Lu G; Ding B
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2846-2850. PubMed ID: 29377456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical nanoantennas for multiband surface-enhanced infrared and Raman spectroscopy.
    D'Andrea C; Bochterle J; Toma A; Huck C; Neubrech F; Messina E; Fazio B; Maragò OM; Di Fabrizio E; Lamy de La Chapelle M; Gucciardi PG; Pucci A
    ACS Nano; 2013 Apr; 7(4):3522-31. PubMed ID: 23530556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy.
    Yue W; Kravets V; Pu M; Wang C; Zhao Z; Hu Z
    Nanotechnology; 2019 Nov; 30(46):465206. PubMed ID: 31483763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates.
    Sharac N; Sharma H; Veysi M; Sanderson RN; Khine M; Capolino F; Ragan R
    Nanotechnology; 2016 Mar; 27(10):105302. PubMed ID: 26867001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response.
    Gupta N; Dhawan A
    Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced photoluminescence and Raman spectroscopy of single molecule confined in coupled Au bowtie nanoantenna.
    Pei H; Peng W; Zhang J; Zhao J; Qi J; Yu C; Li J; Wei Y
    Nanotechnology; 2024 Jan; 35(15):. PubMed ID: 38176065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.
    Kollmann H; Piao X; Esmann M; Becker SF; Hou D; Huynh C; Kautschor LO; Bösker G; Vieker H; Beyer A; Gölzhäuser A; Park N; Vogelgesang R; Silies M; Lienau C
    Nano Lett; 2014 Aug; 14(8):4778-84. PubMed ID: 25051422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic approach towards biomimicry of nanopatterned cicada wings on titanium using electron beam lithography.
    Shahali H; Hasan J; Cheng HH; Ramarishna S; Yarlagadda PK
    Nanotechnology; 2021 Feb; 32(6):065301. PubMed ID: 33022671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaying of the local enhanced electric-field using stacked gold bowtie nanoantennas.
    Ding Q; Toussaint KC
    Nanotechnology; 2019 Sep; 30(36):365202. PubMed ID: 31151116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas.
    Hobbs RG; Putnam WP; Fallahi A; Yang Y; Kärtner FX; Berggren KK
    Nano Lett; 2017 Oct; 17(10):6069-6076. PubMed ID: 28926275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy.
    Kühler P; Roller EM; Schreiber R; Liedl T; Lohmüller T; Feldmann J
    Nano Lett; 2014 May; 14(5):2914-9. PubMed ID: 24754830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosted photocatalytic efficiency through plasmonic field confinement with bowtie and diabolo nanostructures under LED irradiation.
    Lee CH; Liao SC; Lin TR; Wang SH; Lai DY; Chiu PK; Lee JW; Wu WF
    Opt Express; 2016 Aug; 24(16):17541-52. PubMed ID: 27505725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance, single crystal gold bowtie nanoantennas fabricated via epitaxial electroless deposition.
    V Grayli S; Kamal S; Leach GW
    Sci Rep; 2023 Aug; 13(1):12745. PubMed ID: 37550311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy.
    Hatab NA; Hsueh CH; Gaddis AL; Retterer ST; Li JH; Eres G; Zhang Z; Gu B
    Nano Lett; 2010 Dec; 10(12):4952-5. PubMed ID: 21090585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae.
    Dodson S; Haggui M; Bachelot R; Plain J; Li S; Xiong Q
    J Phys Chem Lett; 2013 Feb; 4(3):496-501. PubMed ID: 26281746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.