These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35663799)
21. A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel. Okposo NI; Adewole MO; Okposo EN; Ojarikre HI; Abdullah FA Chaos Solitons Fractals; 2021 Nov; 152():111427. PubMed ID: 36569784 [TBL] [Abstract][Full Text] [Related]
23. Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom. Özköse F; Yavuz M; Şenel MT; Habbireeh R Chaos Solitons Fractals; 2022 Apr; 157():111954. PubMed ID: 35250194 [TBL] [Abstract][Full Text] [Related]
24. Ulam-Hyers stability of tuberculosis and COVID-19 co-infection model under Atangana-Baleanu fractal-fractional operator. Selvam A; Sabarinathan S; Senthil Kumar BV; Byeon H; Guedri K; Eldin SM; Khan MI; Govindan V Sci Rep; 2023 Jun; 13(1):9012. PubMed ID: 37268671 [TBL] [Abstract][Full Text] [Related]
25. Modeling of fractional-order COVID-19 epidemic model with quarantine and social distancing. Farman M; Aslam M; Akgül A; Ahmad A Math Methods Appl Sci; 2021 Jul; 44(11):9334-9350. PubMed ID: 34230734 [TBL] [Abstract][Full Text] [Related]
26. Piecewise Business Bubble System under Classical and Nonsingular Kernel of Mittag-Leffler Law. Zhang C; Li B Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981347 [TBL] [Abstract][Full Text] [Related]
27. A fractional system of delay differential equation with nonsingular kernels in modeling hand-foot-mouth disease. Ghanbari B Adv Differ Equ; 2020; 2020(1):536. PubMed ID: 33014026 [TBL] [Abstract][Full Text] [Related]
28. A mathematical model of Coronavirus Disease (COVID-19) containing asymptomatic and symptomatic classes. Ahmed I; Modu GU; Yusuf A; Kumam P; Yusuf I Results Phys; 2021 Feb; 21():103776. PubMed ID: 33432294 [TBL] [Abstract][Full Text] [Related]
29. Investigation and application of a classical piecewise hybrid with a fractional derivative for the epidemic model: Dynamical transmission and modeling. Saleem MU; Farman M; Nisar KS; Ahmad A; Munir Z; Hincal E PLoS One; 2024; 19(8):e0307732. PubMed ID: 39208269 [TBL] [Abstract][Full Text] [Related]
30. Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia. Chu YM; Ali A; Khan MA; Islam S; Ullah S Results Phys; 2021 Feb; 21():103787. PubMed ID: 33552881 [TBL] [Abstract][Full Text] [Related]
31. A new fractional mathematical modelling of COVID-19 with the availability of vaccine. Kumar P; Erturk VS; Murillo-Arcila M Results Phys; 2021 May; 24():104213. PubMed ID: 33898210 [TBL] [Abstract][Full Text] [Related]
32. Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. Yusuf A; Qureshi S; Inc M; Aliyu AI; Baleanu D; Shaikh AA Chaos; 2018 Dec; 28(12):123121. PubMed ID: 30599538 [TBL] [Abstract][Full Text] [Related]
33. Nonlinear growth and mathematical modelling of COVID-19 in some African countries with the Atangana-Baleanu fractional derivative. Kolebaje OT; Vincent OR; Vincent UE; McClintock PVE Commun Nonlinear Sci Numer Simul; 2022 Feb; 105():106076. PubMed ID: 34690462 [TBL] [Abstract][Full Text] [Related]
34. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Abdo MS; Shah K; Wahash HA; Panchal SK Chaos Solitons Fractals; 2020 Jun; 135():109867. PubMed ID: 32390692 [TBL] [Abstract][Full Text] [Related]
35. Analysis of Atangana-Baleanu fractional-order SEAIR epidemic model with optimal control. Deressa CT; Duressa GF Adv Differ Equ; 2021; 2021(1):174. PubMed ID: 33758591 [TBL] [Abstract][Full Text] [Related]
36. A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics. Abioye AI; Peter OJ; Ogunseye HA; Oguntolu FA; Ayoola TA; Oladapo AO Healthc Anal (N Y); 2023 Dec; 4():100210. PubMed ID: 37361719 [TBL] [Abstract][Full Text] [Related]
37. Impact of quarantine on fractional order dynamical model of Covid-19. Singh R; Tiwari P; Band SS; Rehman AU; Mahajan S; Ding Y; Liu X; Pandit AK Comput Biol Med; 2022 Dec; 151(Pt A):106266. PubMed ID: 36395591 [TBL] [Abstract][Full Text] [Related]
39. Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. Sintunavarat W; Turab A Math Comput Simul; 2022 Aug; 198():65-84. PubMed ID: 35194306 [TBL] [Abstract][Full Text] [Related]
40. Fractional-calculus analysis of the transmission dynamics of the dengue infection. Srivastava HM; Jan R; Jan A; Deebani W; Shutaywi M Chaos; 2021 May; 31(5):053130. PubMed ID: 34240948 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]