These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 35663853)

  • 21. Global geographic trends in antimicrobial resistance: the role of international travel.
    Frost I; Van Boeckel TP; Pires J; Craig J; Laxminarayan R
    J Travel Med; 2019 Dec; 26(8):. PubMed ID: 31115466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry.
    Wang S; Zeng X; Yang Q; Qiao S
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27153059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
    Nuti R; Goud NS; Saraswati AP; Alvala R; Alvala M
    Curr Med Chem; 2017; 24(38):4303-4314. PubMed ID: 28814242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Different Growth Enhancers as Alternative to In-feed Antibiotics in Poultry Industry.
    Rafiq K; Tofazzal Hossain M; Ahmed R; Hasan MM; Islam R; Hossen MI; Shaha SN; Islam MR
    Front Vet Sci; 2021; 8():794588. PubMed ID: 35224074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recombinant production of antimicrobial peptides in heterologous microbial systems.
    Ingham AB; Moore RJ
    Biotechnol Appl Biochem; 2007 May; 47(Pt 1):1-9. PubMed ID: 17432953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Display of multimeric antimicrobial peptides on the Escherichia coli cell surface and its application as whole-cell antibiotics.
    Shin JR; Lim KJ; Kim DJ; Cho JH; Kim SC
    PLoS One; 2013; 8(3):e58997. PubMed ID: 23516591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Eubiotics for Food Security at Farm Level: Yeast Cell Wall Products and Their Antimicrobial Potential Against Pathogenic Bacteria.
    Santovito E; Greco D; Logrieco AF; Avantaggiato G
    Foodborne Pathog Dis; 2018 Sep; 15(9):531-537. PubMed ID: 29874106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Antimicrobial Peptides as Antimicrobial and Antibiofilm Agents in Tackling the Silent Pandemic of Antimicrobial Resistance.
    Lopes BS; Hanafiah A; Nachimuthu R; Muthupandian S; Md Nesran ZN; Patil S
    Molecules; 2022 May; 27(9):. PubMed ID: 35566343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical modifications to increase the therapeutic potential of antimicrobial peptides.
    Han Y; Zhang M; Lai R; Zhang Z
    Peptides; 2021 Dec; 146():170666. PubMed ID: 34600037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance - a review.
    Evangelista AG; Corrêa JAF; Pinto ACSM; Luciano FB
    Crit Rev Food Sci Nutr; 2022; 62(19):5267-5283. PubMed ID: 33554635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation of antibiotic-resistant bacteria in biogas digestate and their susceptibility to antibiotics.
    Sun H; Bjerketorp J; Levenfors JJ; Schnürer A
    Environ Pollut; 2020 Nov; 266(Pt 1):115265. PubMed ID: 32731190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of China's and the European Union's Approaches to Antimicrobial Stewardship in the Pork Industry.
    Lim MSM; Grohn YT
    Foodborne Pathog Dis; 2021 Aug; 18(8):567-573. PubMed ID: 33794668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry.
    Nazeer N; Uribe-Diaz S; Rodriguez-Lecompte JC; Ahmed M
    Br Poult Sci; 2021 Oct; 62(5):672-685. PubMed ID: 33908289
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans.
    Schrijver R; Stijntjes M; Rodríguez-Baño J; Tacconelli E; Babu Rajendran N; Voss A
    Clin Microbiol Infect; 2018 Jun; 24(6):577-590. PubMed ID: 28970159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antimicrobial resistance: A global emerging threat to public health systems.
    Ferri M; Ranucci E; Romagnoli P; Giaccone V
    Crit Rev Food Sci Nutr; 2017 Sep; 57(13):2857-2876. PubMed ID: 26464037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimicrobial resistance at the livestock-human interface: implications for Veterinary Services.
    Magnusson U; Moodley A; Osbjer K
    Rev Sci Tech; 2021 Aug; 40(2):511-521. PubMed ID: 34542097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the Animal Waste Resistome: The Spread of Antimicrobial Resistance Genes Through the Use of Livestock Manure.
    Checcucci A; Trevisi P; Luise D; Modesto M; Blasioli S; Braschi I; Mattarelli P
    Front Microbiol; 2020; 11():1416. PubMed ID: 32793126
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial resistance of mastitis pathogens.
    Oliver SP; Murinda SE
    Vet Clin North Am Food Anim Pract; 2012 Jul; 28(2):165-85. PubMed ID: 22664201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antimicrobial resistance in humans, livestock and the wider environment.
    Woolhouse M; Ward M; van Bunnik B; Farrar J
    Philos Trans R Soc Lond B Biol Sci; 2015 Jun; 370(1670):20140083. PubMed ID: 25918441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimicrobial Peptides: Phylogenic Sources and Biological Activities. First of Two Parts.
    Magrone T; Russo MA; Jirillo E
    Curr Pharm Des; 2018; 24(10):1043-1053. PubMed ID: 29611476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.