These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 35664261)

  • 1. Obtaining the potential number of object models/atlases needed in medical image analysis.
    Jin Z; Udupa JK; Torigian DA
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11315():. PubMed ID: 35664261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How many models/atlases are needed as priors for capturing anatomic population variations?
    Jin Z; Udupa JK; Torigian DA
    Med Image Anal; 2019 Dec; 58():101550. PubMed ID: 31557632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SOMA: Subject-, object-, and modality-adapted precision atlas approach for automatic anatomy recognition and delineation in medical images.
    Li J; Udupa JK; Odhner D; Tong Y; Torigian DA
    Med Phys; 2021 Dec; 48(12):7806-7825. PubMed ID: 34668207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medical image segmentation via atlases and fuzzy object models: Improving efficacy through optimum object search and fewer models.
    Phellan R; Falcão AX; Udupa JK
    Med Phys; 2016 Jan; 43(1):401. PubMed ID: 26745933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomy Recognition in CT Images of Head & Neck Region via Precision Atlases.
    Li J; Udupa JK; Tong Y; Odhner D; Torigian DA
    Proc SPIE Int Soc Opt Eng; 2021; 11596():. PubMed ID: 34887608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation.
    Shi F; Yap PT; Fan Y; Gilmore JH; Lin W; Shen D
    Neuroimage; 2010 Jun; 51(2):684-93. PubMed ID: 20171290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of body-torso-wide tissue composition on low-dose CT images via automatic anatomy recognition.
    Liu T; Udupa JK; Miao Q; Tong Y; Torigian DA
    Med Phys; 2019 Mar; 46(3):1272-1285. PubMed ID: 30614020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atlas ranking and selection for automatic segmentation of the esophagus from CT scans.
    Yang J; Haas B; Fang R; Beadle BM; Garden AS; Liao Z; Zhang L; Balter P; Court L
    Phys Med Biol; 2017 Nov; 62(23):9140-9158. PubMed ID: 29049027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours.
    Fritscher KD; Peroni M; Zaffino P; Spadea MF; Schubert R; Sharp G
    Med Phys; 2014 May; 41(5):051910. PubMed ID: 24784389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
    Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM;
    Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration.
    Sun K; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA
    Med Phys; 2016 Mar; 43(3):1487-500. PubMed ID: 26936732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive probabilistic atlas for anomalous brain segmentation in MR images.
    Martins SB; Bragantini J; Falcão AX; Yasuda CL
    Med Phys; 2019 Nov; 46(11):4940-4950. PubMed ID: 31423590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-atlas based method for automated anatomical Macaca fascicularis brain MRI segmentation and PET kinetic extraction.
    Ballanger B; Tremblay L; Sgambato-Faure V; Beaudoin-Gobert M; Lavenne F; Le Bars D; Costes N
    Neuroimage; 2013 Aug; 77():26-43. PubMed ID: 23537938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic anatomy recognition in whole-body PET/CT images.
    Wang H; Udupa JK; Odhner D; Tong Y; Zhao L; Torigian DA
    Med Phys; 2016 Jan; 43(1):613. PubMed ID: 26745953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of patient specific atlases from locally most similar anatomical pieces.
    Ramus L; Commowick O; Malandain G
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):155-62. PubMed ID: 20879395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised segmentation, clustering, and groupwise registration of heterogeneous populations of brain MR images.
    Ribbens A; Hermans J; Maes F; Vandermeulen D; Suetens P
    IEEE Trans Med Imaging; 2014 Feb; 33(2):201-24. PubMed ID: 23797244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients.
    Sjöberg C; Lundmark M; Granberg C; Johansson S; Ahnesjö A; Montelius A
    Radiat Oncol; 2013 Oct; 8():229. PubMed ID: 24090107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locally Weighted Multi-atlas Construction.
    Li J; Shi Y; Dinov ID; Toga AW
    Multimodal Brain Image Anal (2013); 2013 Jan; 8159():1-8. PubMed ID: 25392851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus.
    van Rikxoort EM; Isgum I; Arzhaeva Y; Staring M; Klein S; Viergever MA; Pluim JP; van Ginneken B
    Med Image Anal; 2010 Feb; 14(1):39-49. PubMed ID: 19897403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Object Model-based Multi-Atlas Segmentation for Rodent Brains using Dense Discrete Correspondences.
    Lee J; Kim SH; Styner M
    Proc SPIE Int Soc Opt Eng; 2016 Feb; 9784():. PubMed ID: 27065200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.