These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 35664329)

  • 1. Plant Genotype to Phenotype Prediction Using Machine Learning.
    Danilevicz MF; Gill M; Anderson R; Batley J; Bennamoun M; Bayer PE; Edwards D
    Front Genet; 2022; 13():822173. PubMed ID: 35664329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library.
    Montesinos-López OA; Montesinos-López A; Cano-Paez B; Hernández-Suárez CM; Santana-Mancilla PC; Crossa J
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Review of High Throughput Phenotyping and Machine Learning for Plant Stress Phenotyping.
    Gill T; Gill SK; Saini DK; Chopra Y; de Koff JP; Sandhu KS
    Phenomics; 2022 Jun; 2(3):156-183. PubMed ID: 36939773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction.
    Xu Y; Zhang X; Li H; Zheng H; Zhang J; Olsen MS; Varshney RK; Prasanna BM; Qian Q
    Mol Plant; 2022 Nov; 15(11):1664-1695. PubMed ID: 36081348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian Genomic Multi-output Regressor Stacking Model for Predicting Multi-trait Multi-environment Plant Breeding Data.
    Montesinos-López OA; Montesinos-López A; Crossa J; Cuevas J; Montesinos-López JC; Gutiérrez ZS; Lillemo M; Philomin J; Singh R
    G3 (Bethesda); 2019 Oct; 9(10):3381-3393. PubMed ID: 31427455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic prediction with machine learning in sugarcane, a complex highly polyploid clonally propagated crop with substantial non-additive variation for key traits.
    Chen C; Powell O; Dinglasan E; Ross EM; Yadav S; Wei X; Atkin F; Deomano E; Hayes BJ
    Plant Genome; 2023 Dec; 16(4):e20390. PubMed ID: 37728221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Benchmarking Between Deep Learning, Support Vector Machine and Bayesian Threshold Best Linear Unbiased Prediction for Predicting Ordinal Traits in Plant Breeding.
    Montesinos-López OA; Martín-Vallejo J; Crossa J; Gianola D; Hernández-Suárez CM; Montesinos-López A; Juliana P; Singh R
    G3 (Bethesda); 2019 Feb; 9(2):601-618. PubMed ID: 30593512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data.
    Tong H; Nikoloski Z
    J Plant Physiol; 2021 Feb; 257():153354. PubMed ID: 33385619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning methods improve genomic prediction of wheat breeding.
    Montesinos-López A; Crespo-Herrera L; Dreisigacker S; Gerard G; Vitale P; Saint Pierre C; Govindan V; Tarekegn ZT; Flores MC; Pérez-Rodríguez P; Ramos-Pulido S; Lillemo M; Li H; Montesinos-López OA; Crossa J
    Front Plant Sci; 2024; 15():1324090. PubMed ID: 38504889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective.
    Mochida K; Koda S; Inoue K; Hirayama T; Tanaka S; Nishii R; Melgani F
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30520975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized grouping to increase accuracy of prediction of breeding values based on group records in genomic selection breeding programs.
    Chu TT; Bastiaansen JWM; Berg P; Komen H
    Genet Sel Evol; 2019 Nov; 51(1):64. PubMed ID: 31730478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracies of genomic predictions for disease resistance of striped catfish to Edwardsiella ictaluri using artificial intelligence algorithms.
    Vu NT; Phuc TH; Oanh KTP; Sang NV; Trang TT; Nguyen NH
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34788431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of classical and machine learning-based phenotype prediction methods on simulated data and three plant species.
    John M; Haselbeck F; Dass R; Malisi C; Ricca P; Dreischer C; Schultheiss SJ; Grimm DG
    Front Plant Sci; 2022; 13():932512. PubMed ID: 36407627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding.
    van Eeuwijk FA; Bustos-Korts D; Millet EJ; Boer MP; Kruijer W; Thompson A; Malosetti M; Iwata H; Quiroz R; Kuppe C; Muller O; Blazakis KN; Yu K; Tardieu F; Chapman SC
    Plant Sci; 2019 May; 282():23-39. PubMed ID: 31003609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Maize Phenotypic Traits With Genomic and Environmental Predictors Using Gradient Boosting Frameworks.
    Westhues CC; Mahone GS; da Silva S; Thorwarth P; Schmidt M; Richter JC; Simianer H; Beissinger TM
    Front Plant Sci; 2021; 12():699589. PubMed ID: 34880880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods.
    Alves AAC; da Costa RM; Bresolin T; Fernandes Júnior GA; Espigolan R; Ribeiro AMF; Carvalheiro R; de Albuquerque LG
    J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32474602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program.
    Sandhu K; Patil SS; Pumphrey M; Carter A
    Plant Genome; 2021 Nov; 14(3):e20119. PubMed ID: 34482627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.
    Bandeira E Sousa M; Cuevas J; de Oliveira Couto EG; Pérez-Rodríguez P; Jarquín D; Fritsche-Neto R; Burgueño J; Crossa J
    G3 (Bethesda); 2017 Jun; 7(6):1995-2014. PubMed ID: 28455415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction norm for genomic prediction of plant growth: modeling drought stress response in soybean.
    Toda Y; Sasaki G; Ohmori Y; Yamasaki Y; Takahashi H; Takanashi H; Tsuda M; Kajiya-Kanegae H; Tsujimoto H; Kaga A; Hirai M; Nakazono M; Fujiwara T; Iwata H
    Theor Appl Genet; 2024 Mar; 137(4):77. PubMed ID: 38460027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of machine learning models applied to genomic prediction in animal breeding.
    Chafai N; Hayah I; Houaga I; Badaoui B
    Front Genet; 2023; 14():1150596. PubMed ID: 37745853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.