BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35664631)

  • 21. Water-richness evaluation method and application of clastic rock aquifer in mining seam roof.
    Qiu M; Shao Z; Zhang W; Zheng Y; Yin X; Gai G; Han Z; Zhao J
    Sci Rep; 2024 Mar; 14(1):6465. PubMed ID: 38499707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Risk assessment of coal mine water inrush based on PCA-DBN.
    Zhang Y; Tang S; Shi K
    Sci Rep; 2022 Jan; 12(1):1370. PubMed ID: 35079120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rock Damage Model Coupled Stress-Seepage and Its Application in Water Inrush from Faults in Coal Mines.
    Shao J; Zhang W; Wu X; Lei Y; Wu X
    ACS Omega; 2022 Apr; 7(16):13604-13614. PubMed ID: 35559151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive study on identification of water inrush sources from deep mining roadway.
    Chen Y; Tang L; Zhu S
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19608-19623. PubMed ID: 34718973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities.
    Medici G; West LJ; Mountney NP
    J Contam Hydrol; 2016 Nov; 194():36-58. PubMed ID: 27969550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling uranium and
    de Boissezon H; Levy L; Jakymiw C; Distinguin M; Guerin F; Descostes M
    J Contam Hydrol; 2020 Nov; 235():103711. PubMed ID: 32949982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring of flow field based on stable isotope geochemical characteristics in deep groundwater.
    Chen LW; Gui HR; Yin XX
    Environ Monit Assess; 2011 Aug; 179(1-4):487-98. PubMed ID: 20963482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flooding of lignite mines: isotope variations and processes in a system influenced by saline groundwater.
    Trettin R; Glässer W; Lerche I; Seelig U; Treutler HC
    Isotopes Environ Health Stud; 2006 Jun; 42(2):159-79. PubMed ID: 16707317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overburden failure and water-sand mixture outburst conditions of weakly consolidated overlying strata in Dananhu No.7 coal mine.
    Zhu J; Li W; Teng B; Lu Q; Li D; Li L
    Sci Rep; 2024 Apr; 14(1):8439. PubMed ID: 38600225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatiotemporal modeling of water inrush spreading in mine roadway networks.
    Zhang X; Wu Q; Zhao Y; Liu S; Xu H
    Water Sci Technol; 2022 Feb; 85(3):872-886. PubMed ID: 35166707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.
    Moya CE; Raiber M; Taulis M; Cox ME
    Sci Total Environ; 2015 Mar; 508():411-26. PubMed ID: 25497681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on sedimentary facies and prediction of favorable reservoir areas in the Fuyu reservoir in the Bayanchagan area.
    Jiang M; Liu Y; Zhang Y; Cao S; Fang H
    J Environ Manage; 2022 Nov; 321():115960. PubMed ID: 36104881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A reactive transport model designed to predict the environmental footprint of an 'in-situ recovery' uranium exploitation.
    Escario S; Seigneur N; Collet A; Regnault O; de Boissezon H; Lagneau V; Descostes M
    J Contam Hydrol; 2023 Mar; 254():104106. PubMed ID: 36634485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sedimentary Characteristics of the Permian Zhesi Formation in Eastern Inner Mongolia, China: Implications for Sedimentary Background and Shale Gas Resource Potential.
    Hu F; Wang J; Liu Z
    ACS Omega; 2022 Dec; 7(49):45287-45300. PubMed ID: 36530247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Groundwater chemical characteristic analysis and water source identification model study in Gubei coal mine, Northern Anhui Province, China.
    Jiang Q; Liu Q; Liu Y; Chai H; Zhu J
    Heliyon; 2024 Mar; 10(5):e26925. PubMed ID: 38486773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mine water supply assessment and evaluation of the system response to the designed demand in a desert region, central Saudi Arabia.
    Yihdego Y; Drury L
    Environ Monit Assess; 2016 Nov; 188(11):619. PubMed ID: 27743279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of broken rock in shallow gobs for mitigating mining-induced water inrush disaster risks and environmental damage: Experimental study and permeability model.
    Miao K; Tu S; Wang Y; Li J; Zhao H; Guo B
    Sci Total Environ; 2023 Dec; 903():166812. PubMed ID: 37673245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analyses of geological and hydrodynamic controls on methane emissions experienced in a Lower Kittanning coal mine.
    Karacan CÖ; Goodman GV
    Int J Coal Geol; 2012 Aug; 98():110-127. PubMed ID: 26478644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on evolution of groundwater-lake system in typical prairie open-pit coal mine area.
    Xia M; Dong S; Chen Y; Liu H
    Environ Geochem Health; 2021 Oct; 43(10):4075-4087. PubMed ID: 33772386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.