These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35664661)

  • 1. Dataset for centrifuge modelling of laterally monotonic loaded monopiles in saturated dense sand.
    Li ZS; Blanc M; Thorel L
    Data Brief; 2022 Jun; 42():108312. PubMed ID: 35664661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study on pile spacing effects under lateral loading in sand.
    Khari M; Kassim KA; Adnan A
    ScientificWorldJournal; 2013; 2013():734292. PubMed ID: 24453900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of p-y curves of laterally loaded piles in cohesionless soil.
    Khari M; Kassim KA; Adnan A
    ScientificWorldJournal; 2014; 2014():917174. PubMed ID: 24574932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections.
    Stacul S; Squeglia N
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29462857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of passive pile on 3D ground deformation and on active pile response.
    Yuan B; Chen R; Teng J; Peng T; Feng Z
    ScientificWorldJournal; 2014; 2014():904186. PubMed ID: 25250391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on load-bearing characteristics of a new pile group foundation for an offshore wind turbine.
    Lang R; Liu R; Lian J; Ding H
    ScientificWorldJournal; 2014; 2014():394104. PubMed ID: 25250375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Study on Whole Wind Power Structure with Innovative Open-Ended Pile Foundation under Long-Term Horizontal Loading.
    Liu J; Wan Z; Dai X; Jeng D; Zhao Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pullout capacity of batter pile in sand.
    Nazir A; Nasr A
    J Adv Res; 2013 Mar; 4(2):147-54. PubMed ID: 25685412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating screw-shaft pile composite foundations in round Gravelly soil: A study using model tests and numerical simulations.
    Yang T; Zheng W; Xie Y; Zhang H; Yue X
    Heliyon; 2023 Oct; 9(10):e20887. PubMed ID: 37876435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Stress in the Soil Surrounding the Axially Loaded Model Pile by Thin, Flexible Sensors.
    Żarkiewicz K; Qatrameez W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of monopiles for offshore wind turbines.
    Kallehave D; Byrne BW; LeBlanc Thilsted C; Mikkelsen KK
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bearing and deformation characteristics of monopile foundation under monotonic and cyclic horizontal loads.
    Ma J; Xu J; Fan Z; Li H; Xu G
    Sci Prog; 2024; 107(2):368504241260268. PubMed ID: 38836302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Strain Transition Properties between Cast-In Fibre Bragg Gratings and Cast Aluminium during Uniaxial Straining.
    Heilmeier F; Koos R; Singer M; Bauer C; Hornberger P; Hiller J; Volk W
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33158171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wind of change for soft-sediment infauna within operational offshore windfarms.
    Lefaible N; Braeckman U; Degraer S; Vanaverbeke J; Moens T
    Mar Environ Res; 2023 Jun; 188():106009. PubMed ID: 37137243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Transverse Bearing Characteristics of the Pile Foundation in a Calcareous Sand Area.
    Hu H; Luo L; Lei G; Guo J; He S; Hu X; Guo P; Gong X
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue Performance of Type I Fibre Bragg Grating Strain Sensors.
    Zhang N; Davis C; Chiu WK; Boilard T; Bernier M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31408984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the Deformation Measurement of the Cast-In-Place Large-Diameter Pile Using Fiber Bragg Grating Sensors.
    Gao L; Yang K; Chen X; Yu X
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uplift resistance capacity of anchor piles used in marine aquaculture.
    Gui F; Kong J; Feng D; Qu X; Zhu F; You Y
    Sci Rep; 2021 Oct; 11(1):20321. PubMed ID: 34645919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helical piles: an innovative foundation design option for offshore wind turbines.
    Byrne BW; Houlsby GT
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of Tactile Sensors and PIV Analysis for Understanding the Bearing Mechanism of Pile Groups.
    You Z; Chen Y
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29415462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.